Several light-absorbing chemicals are known to show phototoxic effects involving many kinds of DNA damage, and are suspected of initiating skin cancer. In this study, we clarified that phosphorylated histone H2AX (γ-H2AX) (phosphorylated histone H2AX), which was produced with the induction of DNA double-strand breaks, is a sensitive photogenotoxic marker. The immortal human keratinocyte line HaCaT was treated with a library of 11 chemicals (including known strong and weak phototoxic chemicals, and nonphototoxic chemicals) and/or UVA exposure. γ-H2AX was generated after treatments with all phototoxic chemicals and UVA. The limit of detection using γ-H2AX was 100-1,000 times lower than that using cell viability and DNA gel electrophoresis. γ-H2AX was not generated following treatments with nonphototoxic chemicals and UVA. These results indicated that γ-H2AX is a powerful tool for detecting chemical photogenotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.