Stem cells from human exfoliated primary tooth pulp and BMC have similar properties. The level of hepatic differentiation in SHED compared with BMC was the same or higher. H2 S increased the level of hepatic differentiation.
Our results show that CD117⁺ SHED and DPSCs are capable of differentiation toward all functional endocrine and exocrine subsets of pancreatic cells in serum-free conditions. SHED and DPSCs may therefore have great potential for future cell therapy of pancreatic disorders.
The current definitive treatment for acute or chronic liver condition, that is, cirrhosis, is liver transplantation from a limited number of donors, which might cause complications after donation. Hence, bone marrow stem cell transplantation has been developed, but the risk of carcinogenesis remains. We have recently developed a protocol for hepatic differentiation of CD117(+) stem cells from human exfoliated deciduous teeth (SHED). In the present study, we examine whether SHED hepatically differentiated (hd) in vitro could be used to treat acute liver injury (ALI) and secondary biliary cirrhosis. The CD117(+) cell fraction was magnetically separated from SHED and then differentiated into hepatocyte-like cells in vitro. The cells were transplanted into rats with either ALI or induced secondary biliary cirrhosis. Engraftment of human liver cells was determined immunohistochemically and by in situ hybridization. Recovery of liver function was examined by means of histochemical and serological tests. Livers of transplanted animals were strongly positive for human immunohistochemical factors, and in situ hybridization confirmed engraftment of human hepatocytes. The tests for recovery of liver function confirmed the presence of human hepatic markers in the animals' blood serum and lack of fibrosis and functional integration of transplanted human cells into livers. No evidence of malignancy was found. We show that in vitro hdSHED engraft morphologically and functionally into the livers of rats having acute injury or secondary biliary cirrhosis. SHED are readily accessible adult stem cells, capable of proliferating in large numbers before differentiating in vitro. This makes SHED an appropriate and safe stem cell source for regenerative medicine.
Transplantation of insulin (INS)-secreting cells differentiated in vitro from stem cells promises a safer and easier treatment of severe diabetes mellitus. A volatile bioactive compound, hydrogen sulfide (H2S), promotes cell differentiation; human tooth-pulp stem cells undergo hepatic differentiation. The aim of this study is to develop a novel protocol using H2S to enhance pancreatic differentiation from the CD117(+) cell fraction of human tooth pulp. During the differentiation, the cells were exposed to 0.1 ng ml(-1) H2S. Immunocytochemistry, RT-PCR, determination of INS c-peptide content and flow cytometry of pancreatically related markers were carried out. Expression of WNT and the PI3K/AKT signaling pathway were also determined by PCR array. After differentiation, INS, glucagon (GCG), somatostatin (SST) and pancreatic polypeptide (PPY) were positive when examined by immunofluorescence. INS and GCG were also determined flow-cytometrically. Only the cells expressing INS increased after H2S exposure. The number of cells expressing GCG was significantly decreased. Genes involved in canonical WNT and the WNT/calcium pathways were highly expressed after H2S exposure. H2S accelerated INS synthesis and secretion by regenerated INS-producing cells from human teeth. All signaling pathway functions of the PI3K-AKT pathway were extremely activated by H2S exposure. The matured INS-producing cells originating in human teeth were increased by H2S in order to control blood-glucose level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.