The optical measurement algorithm for the real front and back surfaces of contact lenses from their center to periphery accurately and simultaneously is proposed. It is an algorithm that makes light incident vertically along the curved surfaces of contact lenses under the condition that the difference of curvature radii between the front and back surfaces is small enough within the NA of the optical probe. For this purpose, we adopted time-domain optical coherence tomography (OCT) with translation and rotation mechanisms. The shape, thickness distribution, and curvature radii of both surfaces were estimated with OCT signal analysis and circular approximation. The measured results were compared with the designed values and the measured data from a conventional shape measurement device. The curved shape of both surfaces and thickness were well matched with the designed values from lens center to periphery. In a curvature radius of the front surface, there was a proportional bias with a limit of agreement of − 0.77 % to − 2.09 % , and the correlation coefficient was 0.57. On the back surface, there was no systematic bias, and minimal detectable change was 0.178 mm, in a range of 95% confidential interval. The proposed algorithm well visualized the real shape and optical characteristics of the contact lens with enough accuracy to the design.
In recent years, with the development of precise lathe-cutting equipment, special shaped contact lenses (CL) have been crafted. However, while it is possible to manufacture such a lens, its shape evaluation has not been well-established. We conducted a basic optical experiment using special lenses to measure a spherical lens and nonspherical mold. As the measurement sample, a metal ball, special CL, and a toric-shaped mold were adopted. In order to accurately measure those real shapes, we proposed an algorithm in which the probe light is vertically incident to the sample surface within a numerical aperture of the optical probe. For this algorithm, we developed the specialized time-domain optical coherence tomography (TD-OCT), which was designed to conduct circular scanning while maintaining vertical incidence by driving a two-axis (vertical and horizontal) micro-electromechanical system mirror with a phase difference of 90°. The shape, thickness distribution, and curvature radii of both front and back surfaces of a CL were estimated with this OCT signal analysis and sphere fitting. The shape and curvature radius were evaluated by using the simulated data under the same experimental conditions. They were sufficiently accurate based on the resolution of this OCT. Also, a toric-shaped mold was evaluated by comparing the relationship between each coordinate and intensity of the interference signal. As a result, it is confirmed that the experimental result and the simulated matched well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.