In this paper, we propose novel resampling algorithms with architectures for efficient distributed implementation of particle filters. The proposed algorithms improve the scalability of the filter architectures affected by the resampling process. Problems in the particle filter implementation due to resampling are described and appropriate modifications of the resampling algorithms are proposed so that distributed implementations are developed and studied. Distributed resampling algorithms with proportional allocation (RPA) and non-proportional allocation (RNA) of particles are considered. The components of the filter architectures are the processing elements (PEs), a central unit (CU) and an interconnection network. One of the main advantages of the new resampling algorithms is that communication through the interconnection network is reduced and made deterministic, which results in simpler network structure and increased sampling frequency. Particle filter performances are estimated for the bearings-only tracking applications. In the architectural part of the analysis, the area and speed of the particle filter implementation are estimated for different number of particles and different level of parallelism with FPGA implementation. In this paper only sampling importance resampling (SIR) particle filters are considered, but the analysis can be extended to any particle filters with resampling.
Newly developed resampling algorithms for particle filters suitable for real-time implementation are described and their analysis is presented. The new algorithms reduce the complexity of both hardware and DSP realization through addressing common issues such as decreasing the number of operations and memory access. Moreover, the algorithms allow for use of higher sampling frequencies by overlapping in time the resampling step with the other particle filtering steps. Since resampling is not dependent on any particular application, the analysis is appropriate for all types of particle filters that use resampling. The performance of the algorithms is evaluated on particle filters applied to bearings-only tracking and joint detection and estimation in wireless communications. We have demonstrated that the proposed algorithms reduce the complexity without performance degradation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.