This paper presents a local constitutive model for modelling the linear and non linear behavior of soft and hard cohesive materials with the discrete element method (DEM). We present the results obtained in the analysis with the DEM of cylindrical samples of cement, concrete and shale rock materials under a uniaxial compressive strength test, different triaxial tests, a uniaxial strain compaction test and Electronic supplementary material The online version of this article (
In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.
In this chapter we present recent advances in the Discrete Element Method (DEM) and in the coupling of the DEM with the Finite Element Method (FEM) for solving a variety of problems in non linear solid mechanics involving damage, plasticity and multifracture situations.
The Discrete Element Method (DEM) is an emerging tool for the calculation of the behaviour of bulk materials. One of the key features of this method is the explicit integration of the motion equations. Explicit methods are rapid, at the cost of a limited time step to achieve numerical stability. First or second order integration schemes based on a Taylor series are frequently used in this framework and showed to be accurate for the translational and rotational motion of spherical particles. However, they may lead to relevant inaccuracies when non-spherical particles are used since the orientation implies a modification in the second order inertia tensor in the inertial reference frame. Specific integration schemes for non-spherical particles have been proposed in the literature, such as the 4 th order Runge-Kutta scheme presented by Munjiza et al. and the predictor-corrector scheme developed by Zhao and van Wachem which applies the direct multiplication algorithm for integrating the orientation. In this work, both methods are adapted to be used together with a Velocity Verlet scheme for the translational in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.