Biocompatible and antimicrobial elastomers with controlled hydrophilicity and degradation rate, as well as appropriate stiffness and elasticity, are interesting for biomedical applications, such as regenerative medicine and tissue engineering.
Biocompatible and electrically conductive porous scaffolds with a desirable hydrophilicity and degradation rate and suitable mechanical performance are highly favorable for tissue engineering and regenerative medicine applications. In this study, we fabricated three-dimensional (3D) porous bioscaffolds from poly(ε-caprolactone) and polylactic acid containing different concentrations of zirconia nanoparticles (n-ZrO 2 ) through freeze-drying technique. Afterward, the surface of the scaffolds was coated with an electrically conductive layer through in situ polymerization of polypyrrole (PPy) on the samples. Bioscaffolds exhibited a favorable range of mechanical properties and electrical conductivity, meeting the required mechanical performances and conductivity for a broad range of tissue engineering applications. Coating PPy on the scaffolds resulted in significantly higher hydrophilicity and faster biodegradation rate, as well as a noticeable enhancement on the in vitro cell attachment, proliferation, and viability. Our findings indicated that the simultaneous presence of n-ZrO 2 and PPy in the system presents a noticeable synergistic effect in overall properties and introduces the fabricated 3D porous scaffolds as promising candidates for tissue engineering and regenerative medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.