Background Data collection is the most critical stage in any population health study and correctly implementing fieldwork enhances the quality of collected information. However, even the most carefully planned large-scale household surveys can encounter many context-specific issues. This paper reflected on our research team’s recent experience conducting surveys for a quasi-experimental evaluation of a reproductive health program in urban areas of Karachi, Pakistan. We aim to describe the issues encountered and lessons learned from this process, and present some potential solutions for conducting future household surveys in similar urban environments. Methods The study followed a three-stage random sampling design. Initially, a Geographical Information System (GIS) was used to construct the sampling frame with union council (UC) area mapping and cluster demarcation followed by random selection of clusters in the selected UCs within the intervention and control sites. The second stage involved a complete household listing in selected clusters and the final stage was a random sampling of households with eligible women. Result This paper describes the issues that were encountered including technical problems related to GIS demarcation of cluster boundaries and hand-held devices for computer assisted personal interviews (CAPI), household listing, interviewing respondents on sensitive topics and their expectations, and ensuring privacy during the survey. Conclusion This study identifies a number of unique barriers to conducting household surveys in Karachi and highlights some key lessons for survey research in urban settlements. GIS mapping technology is a cost-effective method for developing sampling frames in resource-constrained settings. Secondly, the strategy of interviewing women immediately after the cluster is listed may be applied to make it easier to re-locate selected respondents and to reduce loss-to-follow up. Understanding local norms and developing culturally appropriate strategies to build trust with communities may significantly improve survey participation. Researchers should hire experienced female enumerators and provide continuous training on best practices for interviewing women on sensitive reproductive health topics in urban communities.
Background: Data collection is the most critical stage in any population health study and correctly implementing fieldwork enhances the quality of collected information. However, even the most carefully planned large-scale household surveys can encounter many context-specific issues. This paper reflected on our research team’s recent experiences of conducting surveys for a quasi-experimental evaluation of a reproductive health program in urban areas of Karachi, Pakistan. Methods: The study followed a three-stage random sampling design. Result: This paper has described the issues that were encountered around technical problems related to geographical information system (GIS) usage and computer assisted personal interviews (CAPI), household listing, interviewing respondents on sensitive topics and their expectations, and other field related concerns such as ensuring privacy etc. during the survey.Conclusion: The papers has also underscored on lessons learned from this process and presented some potential solutions for conducting future household surveys in similar urban environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.