Fecal indicator organisms are measured to indicate the presence of fecal pollution, yet the association between indicators and pathogens varies by context. The goal of this study was to empirically evaluate the relationships between indicator Escherichia coli , microbial source tracking markers, select enteric pathogen genes, and potential sources of enteric pathogens in 600 rural Bangladeshi households. We measured indicators and pathogen genes in stored drinking water, soil, and on mother and child hands. Additionally, survey and observational data on sanitation and domestic hygiene practices were collected. Log 10 concentrations of indicator E. coli were positively associated with the prevalence of pathogenic E. coli genes in all sample types. Given the current need to rely on indicators to assess fecal contamination in the field, it is significant that in this study context indicator E. coli concentrations, measured by IDEXX Colilert-18, provided quantitative information on the presence of pathogenic E. coli in different sample types. There were no significant associations between the human fecal marker (HumM2) and human-specific pathogens in any environmental sample type. There was an increase in the prevalence of Giardia lamblia genes, any E. coli virulence gene, and the specific E. coli virulence genes stx1/2 with every log 10 increase in the concentration of the animal fecal marker (BacCow) on mothers’ hands. Thus, domestic animals were important contributors to enteric pathogens in these households.
Diarrheal illnesses from enteric pathogens are a leading cause of death in children under five in low- and middle-income countries (LMICs). Sanitation is one way to reduce the spread of enteric pathogens in the environment; however, few studies have investigated the effectiveness of sanitation in rural LMICs in reducing pathogens in the environment. In this study, we measured the impact of a sanitation intervention (dual-pit latrines, sani-scoops, child potties delivered as part of a randomized control trial, WASH Benefits) in rural Bangladeshi household compounds by assessing prevalence ratios, differences, and changes in the concentration of pathogen genes and host-specific fecal markers. We found no difference in the prevalence of pathogenic Escherichia coli, norovirus, or Giardia genes in the domestic environment in the sanitation and control arms. The prevalence of the human fecal marker was lower on child hands and the concentration of animal fecal marker was lower on mother hands in the sanitation arm in adjusted models, but these associations were not significant after correcting for multiple comparisons. In the subset of households with ≥10 individuals per compound, the prevalence of enterotoxigenic E. coli genes on child hands was lower in the sanitation arm. Incomplete removal of child and animal feces or the compound (versus community-wide) scale of intervention could explain the limited impacts of improved sanitation.
Water, sanitation, and hygiene interventions have varying effectiveness in reducing fecal contamination in the domestic environment; delivering them in combination could yield synergies. We conducted environmental assessments within a randomized controlled trial in Bangladesh that implemented single and combined water treatment, sanitation, handwashing (WSH) and nutrition interventions (WASH Benefits, NCT01590095). After one and two years of intervention, we quantified fecal indicator bacteria in samples of drinking water (from source or storage), child hands, children’s food and sentinel objects. In households receiving single water treatment interventions, Escherichia coli prevalence in stored drinking water was reduced by 50% and concentration by 1-log. E. coli prevalence in food was reduced by 30% and concentration by 0.5-log in households receiving single water treatment and handwashing interventions. Combined WSH did not reduce fecal contamination more effectively than its components. Interventions did not reduce E. coli in groundwater, on child hands and on objects. These findings suggest that WSH improvements reduced contamination along the direct transmission pathways of stored water and food but not along indirect upstream pathways. Our findings support implementing water treatment and handwashing to reduce fecal exposure through water and food but provide no evidence that combining interventions further reduces exposure.
Introduction: Community-acquired infections due to extended-spectrum beta-lactamase (ESBL) producing Escherichia coli are rising worldwide, resulting in increased morbidity, mortality, and healthcare costs, especially where poor sanitation and inadequate hygienic practices are very common. Objective: This study was conducted to investigate the prevalence and characterization of multidrug-resistant (MDR) and ESBL-producing E. coli in drinking water samples collected from Rohingya camps, Bangladesh. Methods: A total of 384 E. coli isolates were analyzed in this study, of which 203 were from household or point-of-use (POU) water samples, and 181 were from source water samples. The isolates were tested for virulence genes, ESBL-producing genes, antimicrobial susceptibility by VITEK 2 assay, plasmid profiling, and conjugal transfer of AMR genes. Results: Of the 384 E. coli isolates tested, 17% (66/384) were found to be ESBL producers. The abundance of ESBL-producers in source water contaminated with E. coli was observed to be 14% (27/181), whereas, 19% (39/203) ESBL producers was found in household POU water samples contaminated with E. coli. We detected 71% (47/66) ESBL-E. coli to be MDR. Among these 47 MDR isolates, 20 were resistant to three classes, and 27 were resistant to four different classes of antibiotics. Sixty-four percent (42/66) of the ESBL producing E. coli carried 1 to 7 plasmids ranging from 1 to 103 MDa. Only large plasmids with antibiotic resistance properties were found transferrable via conjugation. Moreover, around 7% (29/384) of E. coli isolates harbored at least one of 10 virulence factors belonging to different E. coli pathotypes. Mahmud et al. ESBL-Producing E. coli in Drinking Water Conclusions: The findings of this study suggest that the drinking water samples analyzed herein could serve as an important source for exposure and dissemination of MDR, ESBL-producing and pathogenic E. coli lineages, which therewith pose a health risk to the displaced Rohingya people residing in the densely populated camps of Bangladesh.
Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.