This paper proposed an improved method for author name disambiguation problem, both homonym and synonym. The data prepared is the distance data of each pair of author’s attributes, Levenshtein distance are used. Using Deep Neural Networks, we found large gains on performance. The result shows that level of accuracy is 99.6% with a low number of hidden layers
This paper presents a method to improve data integrity of individual-based bibliographic repository. Integrity improvement is done by comparing individual-based publication raw data with individual-based clustered publication data. Hierarchical Agglomerative Clustering is used to cluster the publication data with similar author names. Clustering is done by two steps of clustering. The first clustering is based on the co-author relationship and the second is by title similarity and year difference. The two-step hierarchical clustering technique for name disambiguation has been applied to Universitas Sriwijaya Publication Data Center with good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.