The suggestions made by current IDE's code completion features are based exclusively on static type system of the programming language. As a result, often proposals are made which are irrelevant for a particular working context. Also, these suggestions are ordered alphabetically rather than by their relevance in a particular context. In this paper, we present intelligent code completion systems that learn from existing code repositories. We have implemented three such systems, each using the information contained in repositories in a different way. We perform a large-scale quantitative evaluation of these systems, integrate the best performing one into Eclipse, and evaluate the latter also by a user study. Our experiments give evidence that intelligent code completion systems which learn from examples significantly outperform mainstream code completion systems in terms of the relevance of their suggestions and thus have the potential to enhance developers' productivity.
Process-oriented composition languages such as BPEL allow Web Services to be composed into more sophisticated services using a workflow process. However, such languages exhibit some limitations with respect to modularity and flexibility. They do not provide means for a well-modularized specification of crosscutting concerns such as logging, persistence, auditing, and security. They also do not support the dynamic adaptation of composition at runtime. In this paper, we advocate an aspect-oriented approach to Web Service composition and present the design and implementation of AO4BPEL, an aspect-oriented extension to BPEL. We illustrate through examples how AO4BPEL makes the composition specification more modular and the composition itself more flexible and adaptable.
Join point interception (JPI), is considered an important cornerstone of aspect-oriented languages. However, we claim that JPI alone does not suffice for a modular structuring of aspects. We propose CAESAR 1, a model for aspect-oriented programming with a higher-level module concept on top of JPI, which enables reuse and componentization of aspects, allows us to use aspects polymorphically, and introduces a novel concept for dynamic aspect deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.