Westerterp-Plantenga, Margriet S., Klaas R. Westerterp, Mira Rubbens, Christianne R. T. Verwegen, Jean-Paul Richelet, and Bernard Gardette. Appetite at ''high altitude'' [Operation Everest III (Comex-'97)]: a simulated ascent of Mount Everest. J. Appl. Physiol. 87(1): 391-399, 1999.-We hypothesized that progressive loss of body mass during high-altitude sojourns is largely caused by decreased food intake, possibly due to hypobaric hypoxia. Therefore we assessed the effect of long-term hypobaric hypoxia per se on appetite in eight men who were exposed to a 31-day simulated stay at several altitudes up to the peak of Mt. Everest (8,848 m). Palatable food was provided ad libitum, and stresses such as cold exposure and exercise were avoided. At each altitude, body mass, energy, and macronutrient intake were measured; attitude toward eating and appetite profiles during and between meals were assessed by using questionnaires. Body mass reduction of an average of 5 Ϯ 2 kg was mainly due to a reduction in energy intake of 4.2 Ϯ 2 MJ/day (P Ͻ 0.01). At 5,000-and 6,000-m altitudes, subjects had hardly any acute mountain sickness symptoms and meal size reductions (P Ͻ 0.01) were related to a more rapid increase in satiety (P Ͻ 0.01). Meal frequency was increased from 4 Ϯ 1 to 7 Ϯ 1 eating occasions per day (P Ͻ 0.01). At 7,000 m, when acute mountain sickness symptoms were present, uncoupling between hunger and desire to eat occurred and prevented a food intake necessary to meet energy balance requirements. On recovery, body mass was restored up to 63% after 4 days; this suggests physiological fluid retention with the return to sea level. We conclude that exposure to hypobaric hypoxia per se appears to be associated with a change in the attitude toward eating and with a decreased appetite and food intake. 8750-7587/99 $5.00
We hypothesized that hypoxia decreases energy intake and increases total energy requirement and, additionally, that decreased barometric pressure increases total water requirement. Energy and water balance was studied over 31 days in a hypobaric chamber at 452-253 Torr (corresponding to 4,500-8,848 m altitude), after 7 days acclimatization at 4,350 m. Subjects were eight men, age 27+/-4 years (mean+/-SD), body mass index 22.9+/-1.5 kg/m2. Food and water intake was measured with weighed dietary records, energy expenditure and water loss with labelled water. Insensible water loss was calculated as total water loss minus urinary and faecal water loss. Energy intake at normoxia was 13.6+/-1.8 MJ/d. Energy intake decreased from 10.4+/-2.1 to 8.3+/-1.9 MJ/d (P<0.001) and energy expenditure from 13.3+/-1.6 to 12.1+/-1.8 MJ/d (P<0.001) over the first and second 15-day intervals of progressive hypoxia. Absolute insensible water loss did not change (1.67+/-0.26 and 1.66+/-0.37 l/d), however, adjusted for energy expenditure it increased with ambient pressure reduction (P<0.05). In conclusion, hypoxia induced a negative energy balance, mainly by a reduction of energy intake. Overall insensible water loss was unchanged because the increase in respiratory evaporative water loss was counterbalanced by a decrease in metabolic rate that probably limited the hypoxia-induced increase in ventilation.
We hypothesized that hypoxia decreases energy intake and increases total energy requirement and, additionally, that decreased barometric pressure increases total water requirement. Energy and water balance was studied over 31 days in a hypobaric chamber at 452-253 Torr (corresponding to 4,500-8,848 m altitude), after 7 days acclimatization at 4,350 m. Subjects were eight men, age 27+/-4 years (mean+/-SD), body mass index 22.9+/-1.5 kg/m2. Food and water intake was measured with weighed dietary records, energy expenditure and water loss with labelled water. Insensible water loss was calculated as total water loss minus urinary and faecal water loss. Energy intake at normoxia was 13.6+/-1.8 MJ/d. Energy intake decreased from 10.4+/-2.1 to 8.3+/-1.9 MJ/d (P<0.001) and energy expenditure from 13.3+/-1.6 to 12.1+/-1.8 MJ/d (P<0.001) over the first and second 15-day intervals of progressive hypoxia. Absolute insensible water loss did not change (1.67+/-0.26 and 1.66+/-0.37 l/d), however, adjusted for energy expenditure it increased with ambient pressure reduction (P<0.05). In conclusion, hypoxia induced a negative energy balance, mainly by a reduction of energy intake. Overall insensible water loss was unchanged because the increase in respiratory evaporative water loss was counterbalanced by a decrease in metabolic rate that probably limited the hypoxia-induced increase in ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.