In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity.
Nucleus detection is a fundamental task in histological image analysis and an important tool for many follow up analyses. It is known that sample preparation and scanning procedure of histological slides introduce a great amount of variability to the histological images and poses challenges for automated nucleus detection. Here, we studied the effect of histopathological sample fixation on the accuracy of a deep learning based nuclei detection model trained with hematoxylin and eosin stained images. We experimented with training data that includes three methods of fixation; PAXgene, formalin and frozen, and studied the detection accuracy results of various convolutional neural networks. Our results indicate that the variability introduced during sample preparation affects the generalization of a model and should be considered when building accurate and robust nuclei detection algorithms. Our dataset includes over 67 000 annotated nuclei locations from 16 patients and three different sample fixation types. The dataset provides excellent basis for building an accurate and robust nuclei detection model, and combined with unsupervised domain adaptation, the workflow allows generalization to images from unseen domains, including different tissues and images from different labs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.