Hippocampal volumetry is a critical biomarker of aging and dementia, and it is widely used as a predictor of cognitive performance; however, automated hippocampal segmentation methods are limited because the algorithms are (a) not publicly available, (b) subject to error with significant brain atrophy, cerebrovascular disease and lesions, and/or (c) computationally expensive or require parameter tuning. In this study, we trained a 3D convolutional neural network using 259 bilateral manually delineated segmentations collected from three studies, acquired at multiple sites on different scanners with variable protocols. Our training dataset consisted of elderly cases difficult to segment due to extensive atrophy, vascular disease, and lesions. Our algorithm, (HippMapp3r), was validated against four other publicly available state-of-the-art techniques (HippoDeep, FreeSurfer, SBHV, volBrain, and FIRST). HippMapp3r outperformed the other techniques on all three metrics, generating an average Dice of 0.89 and a correlation coefficient of 0.95. It was two orders of magnitude faster than some of the tested techniques. Further validation was performed on 200 subjects from two other disease populations (frontotemporal dementia and vascular cognitive impairment), highlighting our method's low outlier rate. We finally tested the methods on real and simulated "clinical adversarial" cases to study their robustness to corrupt, low-quality scans. The pipeline and models are available at: https://hippmapp3r.readthedocs.ioto facilitate the study of the hippocampus in large multisite studies.
In this study, the DCS was a valid and reliable measure for evaluating catastrophic thinking in patients with dizziness, which was independently associated with dizziness-related disability. Future studies should investigate the influence of alleviating symptoms of catastrophizing on functional outcomes in patients with dizziness or imbalance, the results of which will help guide novel approaches to the clinical care of patients with chronic dizziness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.