Various models have been proposed for the estimation of blood pressure (BP) from pulse transit time (PTT). PTT is defined as the time delay of the pressure wave, produced by left ventricular contraction, measured between a proximal and a distal site along the arterial tree. Most researchers, when they measure the time difference between the peak of the R-wave in the electrocardiogram signal (corresponding to left ventricular depolarisation) and a fiducial point in the photoplethysmogram waveform (as measured by a pulse oximeter attached to the fingertip), describe this erroneously as the PTT. In fact, this is the pulse arrival time (PAT), which includes not only PTT, but also the time delay between the electrical depolarisation of the heart’s left ventricle and the opening of the aortic valve, known as pre-ejection period (PEP). PEP has been suggested to present a significant limitation to BP estimation using PAT. This work investigates the impact of PEP on PAT, leading to a discussion on the best models for BP estimation using PAT or PTT. We conducted a clinical study involving 30 healthy volunteers (53.3% female, 30.9 ± 9.35 years old, with a body mass index of 22.7 ± 3.2 kg/m$$^{2}$$ 2 ). Each session lasted on average 27.9 ± 0.6 min and BP was varied by an infusion of phenylephrine (a medication that causes venous and arterial vasoconstriction). We introduced new processing steps for the analysis of PAT and PEP signals. Various population-based models (Poon, Gesche and Fung) and a posteriori models (inverse linear, inverse squared and logarithm) for estimation of BP from PTT or PAT were evaluated. Across the cohort, PEP was found to increase by 5.5 ms ± 4.5 ms from its baseline value. Variations in PTT were significantly larger in amplitude, − 16.8 ms ± 7.5 ms. We suggest, therefore, that for infusions of phenylephrine, the contribution of PEP on PAT can be neglected. All population-based models produced large BP estimation errors, suggesting that they are insufficient for modelling the complex pathways relating changes in PTT or PAT to changes in BP. Although PAT is inversely correlated with systolic blood pressure (SBP), the gradient of this relationship varies significantly from individual to individual, from − 2946 to − 470.64 mmHg/s in our dataset. For the a posteriori inverse squared model, the root mean squared errors (RMSE) for systolic and diastolic blood pressure (DBP) estimation from PAT were 5.49 mmHg and 3.82 mmHg, respectively. The RMSEs for SBP and DBP estimation by PTT were 4.51 mmHg and 3.53 mmHg, respectively. These models take into account individual calibration curves required for accurate blood pressure estimation. The best performing population-based model (Poon) reported error values around double that of the a posteriori inverse squared model, and so the use of population-based models is not justified.
Objective: Over the last 15 years, developments in camera technology have coincided with increased availability and affordability. This has led to an increasing interest in using these technologies in healthcare settings. Image-based monitoring methods potentially allow multiple vital signs to be measured concurrently using a non-contact sensor. We have undertaken a systematic review of the current availability and performance of these monitoring methods. Approach: A multiple database search was conducted using MEDLINE, Embase, CINAHL, Cochrane Library, OpenGrey, IEEE Xplore Library and ACM Digital Library to July 2018. We included studies comparing image-based heart rate, respiratory rate, oxygen saturation and blood pressure monitoring methods against one or more validated reference device(s). Each included study was assessed using the modified GRRAS criteria for reporting bias. Main results: Of 30 279 identified studies, 161 were included in the final analysis. Twenty studies (20/161, 12%) were carried out on patients in clinical settings, while the remainder were conducted in academic settings using healthy volunteer populations. The 18–40 age group was best represented across the identified studies. One hundred and twenty studies (120/161, 75%) estimated heart rate, followed by 62 studies (62/161, 39%) estimating respiratory rate. Fewer studies focused on oxygen saturation (11/161, 7%) or blood pressure (6/161, 4%) estimation. Fifty-one heart rate studies (51/120, 43%) and 24 respiratory rate studies (24/62, 39%) used Bland–Altman analysis to report their results. Of the heart rate studies, 28 studies (28/51, 55%) showed agreement within industry standards of 5 beats per minute. Only two studies achieved this within clinical settings. Of the respiratory rate studies, 13 studies (13/24, 54%) showed agreement within industry standards of 3 breaths per minute, but only one study achieved this in a clinical setting. Statistical analysis was heterogeneous across studies with frequent inappropriate use of correlation. The majority of studies (99/161, 61%) monitored subjects for under 5 min. Three studies (3/161, 2%) monitored subjects for over 60 min, all of which were conducted in hospital settings. Significance: Heart rate and respiratory rate monitoring using video images is currently possible and performs within clinically acceptable limits under experimental conditions. Camera-derived estimates were less accurate in the proportion of studies conducted in clinical settings. We would encourage thorough reporting of the population studied, details of clinically relevant aspects of methodology, and the use of appropriate statistical methods in future studies. Systematic review registration: PROSPERO CRD42016029167 Protocol: https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-017-0615-3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.