Physician-rated and patient-rated RISD in head and neck cancer patients treated with (CH) RT cannot be predicted with univariate relationships between the dose distribution in a single organ at risk and an endpoint. Separate predictive models are needed for different endpoints and factors other than dose volume histogram parameters are important as well.
The multivariable NTCP models presented in this paper can be used to predict patient-rated xerostomia and sticky saliva. The dose volume parameters included in the models can be used to further optimise IMRT treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.