LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the ∆vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.