SummarySmall herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit, Brachylagus idahoensis; mountain cottontail, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of western North America respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.
Abstract. When selecting habitats, herbivores must weigh multiple risks, such as predation, starvation, toxicity, and thermal stress, forcing them to make fitness trade-offs. Here, we applied the method of paired comparisons (PC) to investigate how herbivores make trade-offs between habitat features that influence selection of food patches. The method of PC measures utility and the inverse of utility, relative risk, and makes trade-offs and indifferences explicit by forcing animals to make choices between two patches with different types of risks. Using a series of paired-choice experiments to titrate the equivalence curve and find the marginal rate of substitution for one risk over the other, we evaluated how toxin-tolerant (pygmy rabbit Brachylagus idahoensis) and fiber-tolerant (mountain cottontail rabbit Sylviagus nuttallii ) herbivores differed in their hypothesized perceived risk of fiber and toxins in food. Pygmy rabbits were willing to consume nearly five times more of the toxin 1,8-cineole in their diets to avoid consuming higher levels of fiber than were mountain cottontails. Fiber posed a greater relative risk for pygmy rabbits than cottontails and cineole a greater risk for cottontails than pygmy rabbits. Our flexible modeling approach can be used to (1) quantify how animals evaluate and trade off multiple habitat attributes when the benefits and risks are difficult to quantify, and (2) integrate diverse risks that influence fitness and habitat selection into a single index of habitat value. This index potentially could be applied to landscapes to predict habitat selection across several scales.
Herbivores that forage on chemically defended plants consume complex mixtures of plant secondary metabolites (PSMs). However, the mechanisms by which herbivores tolerate mixtures of PSMs are relatively poorly understood. As such, it remains difficult to predict how PSMs, singly or as complex mixtures, influence diet selection by herbivores. Although relative rates of detoxification of PSMs have been used to explain tolerance of PSMs by dietary specialist herbivores, few studies have used the rate of detoxification of individual PSMs to understand dietary preferences of individual herbivores for individual versus mixtures of PSMs. We coupled in vivo experiments using captive feeding trials with in vitro experiments using enzymatic detoxification assays to evaluate the dietary preferences and detoxification capacities of pygmy rabbits (Brachylagus idahoensis), dietary specialists on sagebrush (Artemisia spp.), and mountain cottontails (Sylvilagus nuttallii), dietary generalists. We compared preference for five single PSMs in sagebrush compared to a mixture containing those same five PSMs. We hypothesized that relative preference for individual PSMs would coincide with faster detoxification capacity for those PSMs by specialists and generalists. Pygmy rabbits generally showed little preference among individual PSMs compared to mixed PSMs, whereas mountain cottontails exhibited stronger preferences. Pygmy rabbits had faster detoxification capacities for all PSMs and consumed higher concentrations of individual PSMs versus a mixture than cottontails. However, detoxification capacity for an individual PSM did not generally coincide with preferences or avoidance of individual PSMs by either species. Cottontails avoided, but pygmy rabbits preferred, camphor, the PSM with the slowest detoxification rate by both species. Both species avoided β-pinene despite it having one of the fastest detoxification rate. Taken together our in vivo and in vitro results add to existing evidence that detoxification capacity is higher in dietary specialist than generalist herbivores. However, results also suggest that alternative mechanisms such as absorption and the pharmacological action of individual mixtures of PSMs may play a role in determining preference of PSMs within herbivore species.
Dietary specialists often reside in habitats that provide a high and predictable abundance of their primary food, which is usually difficult for other herbivores to consume because of high levels of plant toxins or structural impediments. Therefore, sympatric specialist and generalist herbivores may partition food resources within and among plants. We compared how a dietary specialist (pygmy rabbit, Brachylagus idahoensis) and generalist (mountain cottontail, Sylvilagus nuttallii) used sagebrush as a food resource during winter across 3 field sites in Idaho, USA, and in controlled feeding trials with captive rabbits. The proportion of sagebrush consumed by both rabbit species varied among sites, indicating that characteristics of sagebrush plants and the surrounding plant community influenced use of sagebrush. In addition, freeranging and captive pygmy rabbits consumed a greater proportion of sagebrush and cropped smaller stem diameters with a greater proportion of sagebrush leaves (high monoterpenes, low fiber) relative to stems (low monoterpenes, high fiber) than did cottontails. Cottontails frequently discarded the leafy tips of sagebrush branches. Cottontails are more tolerant of fiber and less tolerant of sagebrush toxins than pygmy rabbits. Cottontails consumed large diameter stems, which diluted toxins in sagebrush but increased fiber intake and reduced digestible nitrogen intake. Pygmy rabbits are less tolerant of fiber but more able to detoxify and eliminate sagebrush toxins than cottontails. Pygmy rabbits consumed small diameter stems, which reduced fiber intake, but increased intake of toxins from sagebrush leaves. Although partitioning of stems and leaves within sagebrush plants may provide a mechanism for coexistence of specialist and generalist rabbits, higher than expected dietary overlap between both free-ranging and captive rabbits in winter might create resource competition in areas with high-density sympatric populations or low availability of sagebrush. In addition, these contrasting foraging strategies have the potential to influence dynamics of sagebrush communities over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.