Mitotic gene conversion acting as reverse mutation has not been previously demonstrated in human. We report here that the revertant mosaicism of a compound heterozygous proband with an autosomal recessive genodermatosis, generalized atrophic benign epidermolysis bullosa, is caused by mitotic gene conversion of one of the two mutated COL17A1 alleles. Specifically, the maternal allele surrounding the mutation site on COL17A1 (1706delA) showed reversion of the mutation and loss of heterozygosity along a tract of at least 381 bp in revertant keratinocytes derived from clinically unaffected skin patches; the paternal mutation (R1226X) remained present in all cell samples. Revertant mosaicism represents a way of natural gene therapy.
Revertant mosaicism by somatic reversion of inherited mutations has been described for a number of genetic diseases. Several mechanisms can underlie this reversion process, such as gene conversion, crossing-over, true back mutation, and second-site mutation. Here, we report the occurrence of multiple corrections in two unrelated probands with revertant mosaicism of non-Herlitz junctional epidermolysis bullosa, an autosomal recessive genodermatosis due to mutations in the COL17A1 gene. Immunofluorescence microscopy and laser dissection microscopy, followed by DNA and RNA analysis, were performed on skin biopsy specimens. In patient 1, a true back mutation, 3781T-->C, was identified in the specimen from the arm, and a second-site mutation, 4463-1G-->A, which compensated for the frameshift caused by the inherited 4424-5insC mutation, was identified in the 3' splice site of exon 55 in a specimen from the middle finger. Patient 2 showed--besides two distinct gene conversion events in specimens from the arm and hand sites, both of which corrected the 1706delA mutation--a second-site mutation (3782G-->C) in an ankle specimen, which prevented the premature ending of the protein by the 3781C-->T nonsense mutation (R1226X). Thus, both inherited mutations, paternal as well as maternal, reverted at least once by different reversion events in distinct cell clusters in the described patients. The occurrence of multiple correcting mutations within the same patient indicates that in vivo reversion is less unusual than was generally thought. Furthermore, in the male patient, mosaic patterns of type XVII collagen-positive keratinocytes were present in clinically unaffected and affected skin. This latter observation makes it likely that reversion may be overlooked and may happen more often than expected.
Integrin alpha6beta4 is a hemidesmosomal transmembrane molecule involved in maintaining basal cell-matrix adhesion through interaction of the large intracytoplasmic tail of the beta4 subunit with the keratin intermediate filament network, at least in part through its binding with plectin and BP180/type XVII collagen. Here we report a patient with predominant features of epidermolysis bullosa simplex due to a mutation in the integrin beta4 gene. The patient, a 49-y-old female, had mild blistering of hands and feet from birth on, dystrophy of the nails with onychogryposis, and enamel hypoplasia. She had no alopecia and no history of pyloric atresia. Electron microscopy and antigen mapping of a skin blister revealed that the level of separation was intraepidermal, low in the basal keratinocytes through the attachment plaque of the hemidesmosome. Immuno-fluorescence microscopy revealed absent binding of monoclonal antibody 450-11 A against the third fibronectin III repeat on the intracellular domain of integrin beta4, whereas binding was reduced with monoclonal antibodies recognizing epitopes on amino-terminal and carboxy-terminal ends of the polypeptide. At the molecular level the phenotype was caused by a novel 2 bp deletion 4733delCT in ITGB4, resulting in in-frame skipping of exon 36 and a deduced 50 amino acid deletion (1450-1499) within the third fibronectin type III repeat in the cytoplasmic domain of the integrin beta4 polypeptide. Immunoblot analysis demonstrated a 5 kDa shorter beta4 polypeptide. The 4733delCT mutation was heterozygously present in the DNA. The patient is also expected to be heterozygous for a null allele, as no full-size protein was detected in vitro and the epitope 450-11 A was absent in vivo. These data show that deletion of the third fibronectin type III repeat in the cytoplasmic domain of integrin beta4, which is thought to interact with BP180/type XVII collagen, is clinically pathogenic and results in a mild phenotype with predominant features of epidermolysis bullosa simplex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.