We compared bacterial 16S ribosomal RNA gene sequences recovered from Lake Loosdrecht, the Netherlands, to reported sequences from lakes in Alaska and New York State. In each of the three lake systems, which differ in pH and trophic state, some sequence types were found without related sequences (sequence identity < 90%) in the data sets from the other two systems. Two sequences in the Actinomycetes and Verrucomicrobia radiations were more closely related to sequences from the New York lakes data set than to any other sequence in the global databases. However, the most striking similarities were found in the subdivisions alpha and beta of the Proteobacteria. In these subdivisions three different clusters of highly related bacteria were identified (97-100% sequence identity) that were represented in all three lake regions. The clusters contained no members other than freshwater bacteria. One cluster falls within a monophyletic aquatic supergroup that apparently diverged early in evolution into an exclusive freshwater cluster and an exclusive marine cluster, the so-called SAR11 cluster. The detection of these three bacterial clades in lakes distinguished by geographic distance as well as physical and chemical diversity suggests that these organisms are dispersed globally and that they possess unique functional capabilities enabling successful competition in a wide range of freshwater environments.
During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles, we concluded that a viral lysis of the filamentous cyanobacteria had taken place. Denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA fragments qualitatively monitored the removal of the cyanobacterial species from the community and the appearance of newly emerging bacterial species. The majority of these bacteria were related to the Cytophagales and actinomycetes, bacterial divisions known to contain species capable of degrading complex organic molecules. A few days after the cyanobacteria started to lyse, a rotifer species became dominant in the DGGE profile of the eukaryotic community. Since rotifers play an important role in the carbon transfer between the microbial loop and higher trophic levels, these observations confirm the role of viruses in channeling carbon through food webs. Multidimensional scaling analysis of the DGGE profiles showed large changes in the structures of both the bacterial and eukaryotic communities at the time of lysis. These changes were remarkably similar in the two enclosures, indicating that such community structure changes are not random but occur according to a fixed pattern. Our findings strongly support the idea that viruses can structure microbial communities.
Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the “microbial loop.” To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limneticain continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.
Bacterial diversity in the water column of a freshwater lake in the Netherlands was investigated by analysis of 16S rRNA gene sequences recovered through PCR amplification from total community DNA. Among 23 unique cloned sequences, two appeared to belong to the recently described bacterial division Verrucomicrobiales. One of the two sequences was most similar to a group of environmental clones that form a distinct lineage within the division. The other sequence was divergent (less than 85% similarity) from all 16S rRNA gene sequences, both from cultivated species and from environmental clones, known in this division to date. Analysis by denaturing gradient gel electrophoresis (DGGE) and sequencing of DNA recovered through excision from the DGGE gel showed that the two sequence types were present in the lake throughout the year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.