Hydrothermal systems are areas in which heated fluids and organic molecules rush through basaltic material rich in metals and minerals. By studying malononitrile and acetonitrile, we examine the effects of metal and mineral nanoparticles on nitrile compounds in anoxic, hydrothermal conditions representing a prebiotic environment of early Earth. Polymerization, reduction, cyclization, and a phenomenon colloquially known as ‘chemical gardening’ (structure building via reprecipitation of metal compounds or complexing with organics) are all potential outcomes with the addition of metals and minerals. Reduction occurs with the addition of rhodium (Rh) or iron (II) sulfide (FeS), with positive identification of ethanol and ethylamine forming from acetonitrile reduction. We find that polymerization and insoluble product formation were associated with oxide minerals, metallic nickel (Ni), and metallic cobalt (Co) acting as catalysts. Oxide minerals strongly promoted polymerization into insoluble, tar-like products of nitriles. FeS, iron-nickel alloy (FeNi), and rhodium are unique cases that appear to act as reagents by actively participating in chemical gardening without returning to their initial state. Further, FeS tentatively had a phase change into the mineral parabutlerite. This research aims to identify metals and metal minerals that could best serve nitrile catalysis and reactions on early Earth.
The ubiquitin-like protein, ISG15, can act as a cytokine or can covalently modify host and pathogen-derived proteins. The consequences of ISG15 modification on substrate fate remain unknown. Here we reveal that ISGylation of the Arp2/3 complex slows actin filament formation and stabilizes Arp2/3 dependent structures including cortical actin and lamella. When properly controlled, this serves as an antibacterial and antiviral host defense strategy to directly restrict actin-mediated pathogen spread. However, Listeria monocytogenes takes advantage in models of dysregulated ISGylation, leading to increased mortality due to augmented spread. The underlying molecular mechanism responsible for the ISG15-dependent impact on actin-based motility is due to failed bacterial separation after division. This promotes spread by enabling the formation of multi-headed bacterial bazookas with stabilized comet tails that can disseminate deeper into tissues. A bacterial mutant that cannot recruit Arp2/3 or a non-ISGylatable mutant of Arp3 is sufficient to rescue slowed comet tail speed and restrict spread. Importantly, ISG15-deficient neonatal mice have aberrant epidermal epithelia characterized by keratinocytes with diffuse cortical actin, which could underlie observed defects in wound healing in human patients who lack ISG15. Ultimately, our discovery links host innate immune responses to cytoskeletal dynamics with therapeutic implications for viral infection and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.