A B S T R A C TStay-green, a trait that confers delayed leaf senescence and improved grain yield under post-anthesis drought, has been associated with smaller canopies at flowering and increased water uptake during the post-flowering period. It has been shown that the main stay-green quantitative trait loci reduce leaf area via reduced tiller number and smaller leaves. To show that these canopy characteristics are directly linked to water savings, we grew near-isogenic lines with and without stay-green introgressions in large lysimeter pots and measured their weekly pre-anthesis water use and main-stem and tiller leaf area. Paradoxically, age-related senescence of lower leaves in stay-green lines was accelerated before flowering, contributing to their smaller leaf area at flowering. This process of reducing leaf area by shedding old leaves lower in the canopy, has not previously been described for the stay-green introgressions. We found that tiller leaf area rather than transpiration efficiency, or transpiration per leaf area, was the main driver of weekly transpiration and the reduced pre-flowering water use in stay-green lines. In soils with good water-holding capacity, any water savings during the pre-anthesis period increases water availability during the post-anthesis period, therefore allowing plants to retain photosynthetic capacity for longer by "staying green" during grain filling.Crown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.