Expression levels of the major mammalian autophagy regulator Beclin 1 and its interaction with Bcl-2 regulate the switch between autophagic cell survival and apoptotic cell death pathways. However, some of the regulators and the precise mechanisms of these processes still remain elusive. Bag-1 (Bcl-2 associated athanogene-1), a member of BAG family proteins, is a multifunctional pro-survival molecule that possesses critical functions in vital cellular pathways. Herein, we report the role of Bag-1 on Bcl-2/Beclin 1 crosstalk through indirectly interacting with Beclin 1. Pull-down experiments suggested a molecular interaction between Bag-1 and Beclin 1 in breast cancer cell lines. On the other hand, in vitro binding assays showed that Bag-1/Beclin 1 interaction does not occur directly but occurs through a mediator molecule. Bag-1 interaction with p-Beclin 1 (T119), indicator of early autophagy, is increased during nutrient starvation suggesting involvement of Bag-1 in the autophagic regulation. Furthermore, CRISPR/Cas9-mediated Bag-1 knock-out in MCF-7 cells hampered cell survival and proliferation and resulted in decreased levels of total LC3 under starvation. Collectively, we suggest that Bag-1 modulates cell survival/death decision through maintaining macroautophagy as a component of Beclin 1-associated complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.