SUMMARY
Despite the fact that strong trial-to-trial correlated variability in responses has been reported in many cortical areas, recent evidence suggests that neuronal correlations are much lower than previously thought. Here, we used multicontact laminar probes to revisit the issue of correlated variability in primary visual (V1) cortical circuits. We found that correlations between neurons depend strongly on local network context—whereas neurons in the input (granular) layers showed virtually no correlated variability, neurons in the output layers (supragranular and infragranular) exhibited strong correlations. The laminar dependence of noise correlations is consistent with recurrent models in which neurons in the granular layer receive intracortical inputs from nearby cells, whereas supragranular and infragranular layer neurons receive inputs over larger distances. Contrary to expectation that the output cortical layers encode stimulus information most accurately, we found that the input network offers superior discrimination performance compared to the output networks.
A ubiquitous feature of neuronal responses within a cortical area is their high degree of inhomogeneity. Even cells within the same functional column are known to have highly heterogeneous response properties when the same stimulus is presented. Whether the wide diversity of neuronal responses is an epiphenomenon or plays a role for cortical function is unknown. Here, we examined the relationship between the heterogeneity of neuronal responses and population coding. Contrary to our expectation, we found that the high variability of intrinsic response properties of individual cells changes the structure of neuronal correlations to improve the information encoded in the population activity. Thus, the heterogeneity of neuronal responses is in fact beneficial for sensory coding when stimuli are decoded from the population response.computational modeling ͉ information coding ͉ sensory cortex ͉ visual cortex ͉ neuronal populations
The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.