We establish the analogue of the Friedlander-Mazur conjecture for Teh's reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety X vanishes in homological degrees larger than the dimension of X in all weights. As an application we obtain a vanishing of homotopy groups of the mod-2 topological groups of averaged cycles and a characterization in a range of indices of the motivic cohomology of a real variety as homotopy groups of the complex of averaged equidimensional cycles. We also establish an equivariant Poincare duality between equivariant Friedlander-Walker real morphic cohomology and dos Santos' real Lawson homology. We use this together with an equivariant extension of the mod-2 Beilinson-Lichtenbaum conjecture to compute some real Lawson homology groups in terms of Bredon cohomology.
In this paper we compute Lawson homology groups and semi-topological K-theory for certain threefolds and fourfolds. We consider smooth complex projective varieties whose zero cycles are supported on a proper subvariety. Rationally connected varieties are examples of such varieties. The computation makes use of different techniques of decomposition of the diagonal cycle, of the Bloch-Kato conjecture and of the spectral sequence relating morphic cohomology and semi-topological K-theory.
We prove equivariant versions of the Beilinson-Lichtenbaum conjecture for Bredon motivic cohomology of smooth complex and real varieties with an action of the group of order two. This identifies equivariant motivic and topological invariants in a large range of degrees.
Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we apply persistent homology methods to investigate the global properties of gene expression in post-mortem brain tissue (cerebral cortex) of individuals with autism spectrum disorders (ASD) and matched controls. We observe a significant difference in the geometry of inter-sample relationships between autism and healthy controls as measured by the sum of the death times of zero-dimensional components and the Euler characteristic. This observation is replicated across two distinct datasets, and we interpret it as evidence for an increased heterogeneity of gene expression in autism. We also assessed the topology of gene-level point clouds and did not observe significant differences between ASD and control transcriptomes, suggesting that the overall transcriptome organization is similar in ASD and healthy cerebral cortex. Overall, our study provides a novel framework for persistent homology analyses of gene expression data for genetically complex disorders.
We use the cylindrical homomorphism and a geometric construction introduced by J. Lewis to study the Lawson homology groups of certain hypersurfaces X ⊂ ℙn + 1 of degree d ℙ n + 1. As an application, we compute the rational semi-topological K-theory of generic cubics of dimensions 5, 6 and 8 and, using the Bloch-Kato conjecture, we prove Suslin's conjecture for these varieties. Using generic cubic sevenfolds, we show that there are smooth projective varieties such that the lowest nontrivial step in their s-filtration is infinitely generated and undetected by the Abel-Jacobi map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.