Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases (HDAC) 1 and 2 as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of MHC class II-selected CD4+ helper T cells (TH) that expressed CD8 lineage genes such as Cd8a and Cd8b1. HDAC1-HDAC2-deficient TH0 and TH1 cells further up-regulated Cd8 lineage genes and acquired a CD8 effector program in a manner dependent on Runx-CBFβ complexes, while TH2 cells repressed CD8 lineage features independently of HDAC1 and HDAC2. These results demonstrate that HDAC1-HDAC2 maintain CD4 lineage integrity by repressing Runx-CBFβ complexes that otherwise induce a CD8-like effector program in CD4+ T cells.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage-dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co-repressor complex function, increased levels of c-Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.