Several lines of evidence indicate that neuropeptide Y (NPY)-mediated neurotransmission in the hippocampus is altered by limbic seizures. The functional consequences of this change are still unresolved and clearly depend on the type of NPY receptors involved. We have investigated the role of NPY Y1 receptor subtypes, which are enriched in the dentate area of the hippocampus, on EEG seizures induced by a local injection of 0.04 microg kainic acid in rats. Intrahippocampal administration of 10 microg BIBP3226 (N2- (diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginamide), a non-peptide selective antagonist at the NPY Y1 receptors, increased threefold on average (P < 0.01) the time to onset of seizures and reduced the number of seizures and the total time in seizures three- and fourfold, respectively (P < 0.01). Its inactive S-enantiomer BIBP3435 was ineffective on seizure activity. One microgram [Leu31,Pro34]NPY, an agonist at Y1 receptors, did not modify per se the EEG sequelae induced by kainic acid but it antagonized the anticonvulsant effect of BIBP3226. These results indicate that NPY Y1 receptors in the hippocampus are involved in epileptic phenomena and suggest that selective Y1 receptor antagonists may be of value for attenuating limbic seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.