Many bacterial strains are developing mechanism of resistance to antibiotics, rendering last-resort antibiotics inactive. Therefore, new drugs are needed and in particular metal-based compounds represent a valid starting point to explore new antibiotic classes. In this study we have chosen to investigate gallium(III) complexes for their potential antimicrobial activity against different strains of Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa which have developed different type of resistance mechanism, including the expression of β-lactamases (NDM-1, ESβL or AmpC) or the production of biofilm. We studied a series of thiosemicarbabazones derived from pyridoxal, their related Ga(III) complexes, and the speciation in solution of the Ga(III)/ligand systems as a function of the pH. Proton dissociation constants and conditional stability constants of Ga(III) complexes were evaluated by UV/Vis spectroscopy, and the most relevant species at physiological pH were identified. The compounds are active against resistant Gram negative strain with minimal inhibitory concentration in the μM range, while no cytotoxicity was detected in eukaryotic cells.
The synthesis, photoactivation and biological activity of a new piano-stool Ru(II) complex is herein reported. The peculiarity of this complex is that its monodentate ligand which undergoes the photodissociation is an asymmetric bis-thiocarbohydrazone ligand that possesses a pyridine moiety binding to Ru(II) and the other moiety contains a quinoline that endows the ligand with the capacity of chelating other metal ions. In this way, upon dissociation, the ligand can be released in the form of a metal complex. In this article, the double ability of this new Ru(II) complex to photorelease the ligand and to chelate copper and nickel is explored and confirmed. The biological activity of this compound is studied in cell line A549 revealing that, after irradiation, proliferation inhibition is reached at very low half maximal inhibitory concentration (IC50) values. Further, biological assays reveal that the dinuclear complex containing Ni is internalized in cells.
The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.
Novel solid-phase microextraction
coatings based on the use of multiwalled carbon nanotube–cyclodextrin (MWCNT-CD) nanocomposites were developed for the determination of 16-priority polycyclic aromatic hydrocarbons at ultratrace levels in snow samples. The performance of both β- and γ-CD was tested to increase the detection capabilities towards the heaviest and most lipophilic compounds, i.e., five- and six-ring PAHs. To facilitate the interactions of MWCNTs with CDs, an oxidation procedure using both HNO3 and H2O2 was applied, obtaining superior results using MWCNTs-H2O2-γ-CD fiber. Detection and quantitation limits below 0.7 and 2.3 ng/L, RSD lower than 21%, and recoveries of 88(± 2)–119.8(± 0.4)% proved the reliability of the developed method for the determination of PAHs at ultratrace levels. The complexation capability of the γ-CD was also demonstrated in solution by NMR and fluorescence spectroscopy studies and at solid state by XRD analysis. Finally, snow samples collected in the ski area of Dolomiti di Brenta were analyzed, showing a different distribution of the 16 priority PAHs, being naphthalene, phenanthrene, fluoranthene, and pyrene the only compounds detected in all the analyzed samples.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.