The inhabitants of the world are expected to grow by two billion in the next two decades; as population increases, food demand rises too, leading to more intensive resource exploitation and greater negative externalities related to food production. In this paper the environmental impact of meals provided in school canteens are analysed through the Life Cycle Assessment methodology, in order to evaluate the GHGs emissions released by food production. Meals, and not just individual foods, have been considered so as to include in the analysis the nutritional aspects on which meals are based. Results shows that meat, fish and dairy products are the most impacting in terms of greenhouse gas emissions, with values that shift from 31.7 and 24.1 kg CO2 eq for butter and veal, to 2.37 kg CO2 eq for the octopus, while vegetables, legumes, fruit and cereals are less carbon intensive (average of 3.71 kg CO2 eq for the considered vegetables). When the environmental impact is related to the food energy, the best option are first courses because they combine a low carbon footprint with a high energy content. The results of the work can be used both by the consumer, who can base the meal choice on environmental impact information, and by food services, who can adjust menus to achieve a more sustainable production.
The combined steam/dry reforming (S/DR) technology was used to produce syngas from clean biogas. In the reaction conditions proposed, the catalytic bed can produce, without deactivation, a syngas with a H 2 /CO ratio of ≈2 directly processable for methanol or Fischer−Tropsch syntheses. Starting from the laboratory data obtained in the industrial conditions, mass and energy balances for the overall process were obtained from Aspen HYSYS simulations. The environmental evaluation was performed by applying the life cycle assessment (LCA) methodology, comparing different scenarios to the current industrial route to produce syngas (autothermal reforming or ATR of natural gas). The analysis showed that clean biogas-to-syngas technology using reforming processes has the potential to reduce the anthropogenic impact on the environment. The ReCiPe method showed that when the combined S/DR process is conducted using clean biogas also as a heat source, the CO 2 balance turns negative, ensuring that the whole process has excellent potential as carbon capture and utilization (CCU) technology providing the lowest damage in all categories. Its improvement would make it possible to further reduce the environmental burden of the overall process, which is essential for achieving sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.