Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in 3D space. Furthermore, their target genes are often unknown. We have now created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers with their target genes, often located hundreds of kilobases away. It also revealed >1300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D GWAS signals.
Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Type 2 diabetes mellitus (T2DM) is characterized by the inability of the insulin-producing β-cells to overcome insulin resistance. We previously identified an imprinted region on chromosome 14, the DLK1-MEG3 locus, as being downregulated in islets from humans with T2DM. In this study, using targeted epigenetic modifiers, we prove that increased methylation at the promoter of Meg3 in mouse βTC6 β-cells results in decreased transcription of the maternal transcripts associated with this locus. As a result, the sensitivity of β-cells to cytokine-mediated oxidative stress was increased. Additionally, we demonstrate that an evolutionarily conserved intronic region at the MEG3 locus can function as an enhancer in βTC6 β-cells. Using circular chromosome conformation capture followed by high-throughput sequencing, we demonstrate that the promoter of MEG3 physically interacts with this novel enhancer and other putative regulatory elements in this imprinted region in human islets. Remarkably, this enhancer is bound in an allele-specific manner by the transcription factors FOXA2, PDX1, and NKX2.2. Overall, these data suggest that the intronic MEG3 enhancer plays an important role in the regulation of allele-specific expression at the imprinted DLK1-MEG3 locus in human β-cells, which in turn impacts the sensitivity of β-cells to cytokine-mediated oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.