Nitric oxide (NO) and the lipid peroxidation (LPO) product 4-hydroxynonenal (HNE) are considered to be key mediators of cartilage destruction in osteoarthritis (OA). NO is also known to be an important intermediary in LPO initiation through peroxynitrite formation. The aim of the present study was to assess the ability of the inducible NO synthase (iNOS) inhibitor N-iminoethyl-L-lysine (L-NIL) to prevent HNE generation via NO suppression in human OA chondrocytes and cartilage explants. Human OA chondrocytes and cartilage explants were treated with L-NIL and thereafter with or without interleukin-1beta (IL-1β) or HNE at cytotoxic or non-cytotoxic concentrations. Parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. L-NIL stifled IL-1β-induced NO release, iNOS activity, nitrated proteins, and HNE generation in a dose-dependent manner. It also blocked IL-1β-induced inactivation of the HNE-metabolizing glutathione-s-transferase (GST). L-NIL restored both HNE and GSTA4-4 levels in OA cartilage explants. Interestingly, it also abolished IL-1β-evoked reactive oxygen species (ROS) generation and p47 NADPH oxidase activation. Furthermore, L-NIL significantly attenuated cell death and markers of apoptosis elicited by exposure to a cytotoxic dose of HNE as well as the release of prostaglandin E(2) and metalloproteinase-13 induced by a non-cytotoxic dose of HNE. Altogether, our findings support a beneficial effect of L-NIL in OA by (i) preventing the LPO process and ROS production via NO-dependent and/or independent mechanisms and (ii) attenuating HNE-induced cell death and different mediators of cartilage damage.
Our findings, like those in the literature, illustrate the central role played by HNE in the regulation of a number of factors involved in joint homeostasis. HNE could thus be considered as an attractive therapeutic target in OA.
INTRODUCTION:Emerging evidence indicates that nitric oxide (NO), which is increased in osteoarthritic (OA) cartilage, plays a role in 4-hydroxynonenal (HNE) generation through peroxynitrite formation. HNE is considered as the most reactive product of lipid peroxidation (LPO). We have previously reported that HNE levels in synovial fluids are more elevated in knees of OA patients compared to healthy individuals. We also demonstrated that HNE induces a panoply of inflammatory and catabolic mediators known for their implication in OA cartilage degradation. The aim of the present study was to investigate the ability of inducible NO synthase (iNOS) inhibitor, L-NIL (L-N6-(L-Iminoethyl)Lysine), to prevent HNE generation through NO inhibition in human OA chondrocytes.METHOD: Cells and cartilage explants were treated with or without either an NO generator (SIN or interleukin 1beta (IL-1β)) or HNE in absence or presence of L-NIL. Protein expression of both iNOS and free-radical-generating NOX subunit p47 (phox) were investigated by western blot. iNOS mRNA detection was measured by real-time RT-PCR. HNE production was analysed by ELISA, Western blot and immunohistochemistry. S-nitrosylated proteins were evaluated by Western Blot. Prostaglandin E2 (PGE2) and metalloproteinase 13 (MMP-13) levels as well as glutathione S-transferase (GST) activity were each assessed with commercial kits. NO release was determined using improved Griess method. Reactive oxygen species (ROS) generation was revealed using fluorescent microscopy with the use of commercial kits.RESULTS: L-NIL prevented IL-1β-induced NO release, iNOS expression at protein and mRNA levels, S-nitrosylated proteins and HNE in a dose dependent manner after 24h of incubation. Interestingly, we revealed that L-NIL abolished IL-1β-induced NOX component p47phox as well as ROS release. The HNE-induced PGE2 release and both cyclooxygenase-2 (COX-2) and MMP-13 expression were significantly reduced by L-NIL addition. Furthermore, L-NIL blocked the IL-1β induced inactivation of GST, an HNE-metabolizing enzyme. Also, L-NIL prevented HNE induced cell death at cytotoxic levels. CONCLUSION:Altogether, our findings support a beneficial effect of L-NIL in OA by preventing LPO process in NO-dependent and/or independent mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.