The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.
Wheat (Triticum aestivum L.) grain storage proteins (GSPs) are major determinants of flour end-use value. Biological and molecular mechanisms underlying the developmental and nutritional determination of GSP accumulation in cereals are as yet poorly understood. Here we timed the accumulation of GSPs during wheat grain maturation relative to changes in metabolite and transcript pools in different conditions of nitrogen (N) and sulfur (S) availability. We found that the N/S supply ratio modulated the duration of accumulation of S-rich GSPs and the rate of accumulation of S-poor GSPs. These changes are likely to be the result of distinct relationships between N and S allocation, depending on the S content of the GSP. Most developmental and nutritional modifications in GSP synthesis correlated with the abundance of structural gene transcripts. Changes in the expression of transport and metabolism genes altered the concentrations of several free amino acids under variable conditions of N and S supply, and these amino acids seem to be essential in determining GSP expression. The comprehensive data set generated and analyzed here provides insights that will be useful in adapting fertilizer use to variable N and S supply, or for breeding new cultivars with balanced and robust GSP composition.
Storage protein activator (SPA) is a key regulator of the transcription of wheat (Triticum aestivum) grain storage protein genes and belongs to the Opaque2 transcription factor subfamily. We analyzed the sequence polymorphism of the three homoeologous Spa genes in hexaploid wheat. The level of polymorphism in these genes was high particularly in the promoter. The deduced protein sequences of each homoeolog and haplotype show greater than 93% identity. Two major haplotypes were studied for each Spa gene. The three Spa homoeologs have similar patterns of expression during grain development, with a peak in expression around 300 degree days after anthesis. On average, Spa-B is 10 and seven times more strongly expressed than Spa-A and Spa-D, respectively. The haplotypes are associated with significant quantitative differences in Spa expression, especially for Spa-A and Spa-D. Significant differences were found in the quantity of total grain nitrogen allocated to the gliadin protein fractions for the Spa-A haplotypes, whereas the synthesis of glutenins is not modified. Genetic association analysis between Spa and dough viscoelasticity revealed that Spa polymorphisms are associated with dough tenacity, extensibility, and strength. Except for Spa-A, these associations can be explained by differences in grain hardness. No association was found between Spa markers and the average single grain dry mass or grain protein concentration. These results demonstrate that in planta Spa is involved in the regulation of grain storage protein synthesis. The associations between Spa and dough viscoelasticity and grain hardness strongly suggest that Spa has complex pleiotropic functions during grain development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.