Little is known about the way higher-order chromatin structure influences gene expression and chromosome topology in general. Genetic analysis in Drosophila has led to the discovery of two classes of genes, the regulators of homeotic genes and the modifiers of position-effect variegation, which seem to be good candidates for encoding some of the factors regulating chromatin functions. The Trithorax-like gene we described here is required for the normal expression of the homeotic genes and is a modifier of position-effect variegation. We found that Trithorax-like encodes the GAGA factor which is involved in the formation of an accessible chromatin structure at promoter sequences. Our genetic analysis suggests that the chromatin modelling function of the GAGA factor is not restricted to promoter regions.
An extremely large cis‐regulatory region generates the parasegment‐specific expression patterns of the homeotic genes in the bithorax complex. We present evidence supporting the idea that this cis‐regulatory region is subdivided into independent cis‐regulatory domains. We describe a Ubx‐lacZ transposon which is inserted into one of these domains, iab‐7. The PS12‐specific pattern of LacZ expression from this reporter indicates that it is subject to the control of the iab‐7 cis‐regulatory domain, but is protected from the effects of adjacent regulatory domains. Protection on the proximal side appears to be provided by the Fab‐7 boundary element. Deletion of this boundary results in the ectopic activation of iab‐7 in PS11 (where the iab‐6 cis‐regulatory domain normally functions). We show that the Fab‐7 boundary, like other boundaries, has an unusual chromatin structure.
A very large cis-regulatory region of approximately 300 kb is responsible for the complex patterns of expression of the three homeotic genes of the bithorax complex Ubx, abd-A and Abd-B. This region can be subdivided in nine parasegment-specific regulatory subunits. Recent genetic and molecular analysis has revealed the existence of two novel cis-regulatory elements Mcp and Fab-7. Mcp is located between iab-4 and iab-5, the parasegment-specific regulatory subunits which direct Abd-B in parasegments 9 and 10. Similarly, Fab-7 is located between iab-6 and iab-7, the parasegment 11 and 12-specific regulatory units. Mcp and Fab-7 appear to function as domain boundaries that separate adjacent cis-regulatory units. We report the analysis of two new Mcp mutant deletions (McpH27 and McpB116) that allow us to localize sequences essential for boundary function to a approximately 0.4 kb DNA segment. These essential sequences closely coincide to a approximately 0.3 kb nuclease hypersensitive region in chromatin. We also show that sequences contributing to the Fab-7 boundary appear to be spread over a larger stretch of DNA, but like Mcp have an unusual chromatin structure.
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.