The recessive resistance genes pot-1 and pvr2 in Lycopersicon hirsutum and Capsicum annuum, respectively, control Potato virus Y (PVY) accumulation in the inoculated leaves. Infectious cDNA molecules from two PVY isolates differing in their virulence toward these resistances were obtained using two different strategies. Chimeras constructed with these cDNA clones showed that a single nucleotide change corresponding to an amino acid substitution (Arg119His) in the central part of the viral protein genome-linked (VPg) was involved in virulence toward the pot-1 resistance. On the other hand, 15 nucleotide changes corresponding to five putative amino acid differences in the same region of the VPg affected virulence toward the pvr2(1) and pvr2(2) resistances. Substitution models identified six and five codons within the central and C terminal parts of the VPg for PVY and for the related potyvirus Potato virus A, respectively, which undergo positive selection. This suggests that the role of the VPg-encoding region is determined by the protein and not by the viral RNA apart from its protein-encoding capacity.
Five different amino acid substitutions in the VPg of Potato virus Y were shown to be independently responsible for virulence toward pvr2(3) resistance gene of pepper. A consequence of these multiple mutations toward virulence involving single nucleotide substitutions is a particularly high frequency of resistance breaking (37% of inoculated plants from the first inoculation) and suggests a potentially low durability of pvr2(3) resistance. These five mutants were observed with significantly different frequencies, one of them being overrepresented. Genetic drift alone could not explain the observed distribution of virulent mutants. More plausible scenarios were obtained by taking into account either the relative substitution rates, the relative fitness of the mutants in pvr2(3) pepper plants, or both.
The modes of evolution of the proteins of Potato virus Y were investigated with a maximumlikelihood method based on estimation of the ratio between non-synonymous and synonymous substitution rates. Evidence for diversifying selection was obtained for the 6K2 protein (one amino acid position) and coat protein (24 amino acid positions). Amino acid sites in the coat proteins of other potyviruses (Bean yellow mosaic virus, Yam mosaic virus) were also found to be under diversifying selection. Most of the sites belonged to the N-terminal domain, which is exposed to the exterior of the virion particle. Several of these amino acid positions in the coat proteins were shared between some of these three potyviruses. Identification of diversifying selection events in these different proteins will help to unravel their biological functions and is essential to an understanding of the evolutionary constraints exerted on the potyvirus genome. The hypothesis of a link between evolutionary constraints due to host plants and occurrence of diversifying selection is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.