Neuronal injury resulting from acute brain insults and some neurodegenerative diseases implicates N-methyl-D-aspartate (NMDA) glutamate receptors. The fact that antioxidants reduce some types of brain damage suggests that oxygen radicals may have a role. It has been shown that mutations in Cu/Zn-superoxide dismutase (SOD), an enzyme catalysing superoxide (O2.-) detoxification in the cell, are linked to a familial form of amyotrophic lateral sclerosis (ALS). Here we report that O2.- is produced upon NMDA receptor stimulation in cultured cerebellar granule cells. Electron paramagnetic resonance was used to assess O2.- production that was due in part to the release of arachidonic acid. Activation of kainic acid receptors, or voltage-sensitive Ca2+ channels, did not produce detectable O2.-. We also find that the nitrone DMPO (5,5-dimethyl pyrroline 1-oxide), used as a spin trap, is more efficient than the nitric oxide synthase inhibitor, L-NG-nitro-arginine, in reducing NMDA-induced neuronal death in these cultures.
Choroid plexuses (CP) are involved in multiple functions related to their unique architecture and localization at the interface between the blood and cerebrospinal fluid compartments. These include the release by choroidal epithelial cells (CEC) of biologically active molecules, such as polypeptides, which are distributed globally to the brain. Here, we have used a proteomic approach to get an unbiased overview of the proteins that are secreted by primary cultures enriched in epithelial cells from mice CP. We identified a total of 43 proteins secreted through the classical vesicular pathway in CEC -conditioned medium. They include transport proteins, collagen subunits and other cell matrix proteins, proteases, protease inhibitors and neurotrophic factors. Treating CEC cultures with lipopolysaccharide, increased the secretion of four protein species and induced the release of two additional proteins. Our study also reveals a higher protein secretion capacity of CECs compared with other CP cells or cultured astrocytes. In conclusion, this study provides for the first time the characterization of the major proteins that are secreted by CECs. These proteins may play a critical role in neuronal growth, differentiation and function as well as in brain pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.