All‐solid‐state batteries (ASSB) require stable and safe lithium (Li) metal anode, which needs surface preparation to increase lithium diffusion and impede the formation of dendrites. In this work, the formation of a thin LiZn layer on lithium metal using sputter deposition is reported. This method was selected due to the absence of solvents and by‐products generated during the modification, for its rapidity and because the formation of the alloy is performed in a clean and controlled atmosphere. Zinc has been chosen for its low cost and high Li+ ion diffusion coefficient of the corresponding LiZn alloy that is 1000 times higher than Li. Different parameters for the Zn deposition were investigated such as the distance between the Zn target and Li foil, the effect of substrate tilt and the direct current applied to the target. Electrochemical performance of LiFePO4/solid polymer electrolyte/Li ASSB demonstrated the superiority of the LiZn anodes and the clear influence of deposition parameters on the durability and performance at high C‐rates. Scanning electron microscopy images of the cross‐sectional view of LFP/SPE/Li stackings extracted from pouch cells after cycling showed an evident migration of Zn into the bulk Li metal anode as well as the formation of AlZn nanoparticles.
We propose a innovative concept to boost the electrochemical performance of cathode composite electrodes using surface-modified carbons with hydrophilic moieties to increase their dispersion in a Lithium nickel Manganese cobalt oxide (nMc) cathode and in-situ generate Li-rich carbon surfaces. Using a rapid aqueous process, the hydrophilic carbon is effectively dispersed in NMC particles followed by the conversion of its acid surface groups (e.g.-COOH), which interact with the NMC particles due to their basicity, into grafted Li salt (-COO − Li +). the solid-state batteries prepared using the cathode composites with surface-modified carbon exhibit better electrochemical performance. Such modified carbons led to a better electronic conduction path as well as facilitating Li + ions transfer at the carbon/NMC interface due to the presence of lithiated carboxylate groups on their surface.
All-solid-state batteries are known to be the new energy storage holy grail that will lead to safer batteries with higher energy density than current Li-ion batteries. The use of a solid electrolyte enables the use of lithium metal as the anode material. However, its composition, its thickness, and the quality/nature of its passivation layer can strongly affect the performance of the battery. For this reason, we propose a simple benchmarking method that evaluates and compares the quality and electrochemical performance of various Li anodes. This method can be easily reproduced, especially concerning the electrochemical evaluation that uses a commercial liquid electrolyte and the widely spread coin-cell format. In total, ~285 coin cells were assembled to benchmark our in-house lithium metal foil (Lithium HQ) with two commercial ones and the results showed the superior performance of our Li metal anode. The performance of the cells seems closely related to the quality and uniformity of the Li surface. In addition, we propose including in the benchmarking method the effect of Li aging in a dry room on the electrochemical performance. This effect is important to consider because the fabrication of all-solid-state batteries is conducted in such an environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.