The solid-state phase transitions between the α, β and γ forms of DL-norleucine were studied using DSC, thermal stage polarization microscopy and solid-state NMR. Since the crystals consist of 2D hydrogen-bonded bilayers with van der Waals interactions between consecutive bilayers, the transitions occur in a layer-wise fashion with a propagating transformation front. The α↔γ transition at 390 K is a clear example of a first order transition with a relatively large enthalpy difference between the polymorphs and a small hysteresis, indicating the kinetic barrier for this transition is relatively small. In contrast, the α↔β transition is not reproducible in similar crystals and the enthalpy difference is very small. Both the α and β polymorphic forms can coexist in a "single crystal" over a large temperature range, apparently without enforcing stress, while the α↔γ transition propagates fast to relieve stress from the volume and conformational change. Moreover, the kinetics of the α↔β transition are much faster in single crystals than in powders, which is attributed to the inhibitory effect of defects on cooperative motion. The thermodynamic transition temperature of the α↔β transition is estimated between 253 and 268 K. This work also shows that traditional methods of polymorph screening might overlook some solid-state phase transitions similar to the α↔β transition in DL-norleucine.
During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity as revealed by resistivity values as low as 18 lX cm and C-and F-levels below detection limits of energy dispersive x-ray analysis. The growth of the silver films starts through the nucleation of islands that subsequently coalesce. The authors show that the surface island morphology is dependent on surface diffusion, which can be controlled by temperature within the deposition temperature range of 100-120 C. V C 2014 American Vacuum Society.
The interfacial structure of muscovite in contact with aqueous CsI solutions was measured using surface X-ray diffraction for several CsI concentrations (2–1000 mM). At CsI concentrations up to 200 mM, Cs+ adsorption is likely hindered by H3O+, as both cations compete for the adsorption site above the muscovite hexagonal cavity. Above this concentration, more Cs+ adsorbs than is required to compensate the negatively charged muscovite surface, which means that coadsorption of an anion takes place. The I– anion does not coadsorb in an ordered manner. Moreover, the hydration ring and water layers do not change significantly as a function of the CsI concentration.
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. DL-Norleucine is a molecular crystal exhibiting two enantiotropic phase transitions. The high temperature a 4 g transition has been shown to proceed through nucleation and growth [Mnyukh et al., J. Phys. Chem. Solids, 1975, 36, 127]. We focus on the low temperature b 4 a transition in a combined computational and experimental study.The temperature dependence of the structural and energetic properties of both polymorphic forms is nearly identical. Molecular dynamics simulations and nudged elastic band calculations of the transition process itself, suggest that the transition is governed by cooperative movements of bilayers over relatively large energy barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.