Exposure of yeast cells to an increase in external osmolarity induces a temporary growth arrest. Recovery from this stress is mediated by the accumulation of intracellular glycerol and the transcription of several stress response genes. Increased external osmolarity causes a transient accumulation of 1N and 2N cells and a concomitant depletion of S phase cells. Hypertonic stress triggers a cell cycle delay in G2 phase cells that appears distinct from the morphogenesis checkpoint, which operates in early S phase cells. Hypertonic stress causes a decrease in CLB2 mRNA, phosphorylation of Cdc28p, and inhibition of Clb2p-Cdc28p kinase activity, whereas Clb2 protein levels are unaffected. Like the morphogenesis checkpoint, the osmotic stress-induced G2 delay is dependent upon the kinase Swe1p, but is not tightly correlated with inhibition of Clb2p-Cdc28p kinase activity. Thus, deletion of SWE1 does not prevent the hypertonic stress-induced inhibition of Clb2p-Cdc28p kinase activity. Mutation of the Swe1p phosphorylation site on Cdc28p (Y19) does not fully eliminate the Swe1p-dependent cell cycle delay, suggesting that Swe1p may have functions independent of Cdc28p phosphorylation. Conversely, deletion of the mitogen-activated protein kinase HOG1 does prevent Clb2p-Cdc28p inhibition by hypertonic stress, but does not block Cdc28p phosphorylation or alleviate the cell cycle delay. However, Hog1p does contribute to proper nuclear segregation after hypertonic stress in cells that lack Swe1p. These results suggest a hypertonic stress-induced cell cycle delay in G2 phase that is mediated in a novel way by Swe1p in cooperation with Hog1p.
There are only a few proteins identified at the cell surface that could directly regulate plant cell wall functions. The cell wall-associated kinases (WAKs) of angiosperms physically link the plasma membrane to the carbohydrate matrix and are unique in that they have the potential to directly signal cellular events through their cytoplasmic kinase domain. In Arabidopsis there are five WAKs and each has a cytoplasmic serine/threonine protein kinase domain, spans the plasma membrane, and extends a domain into the cell wall. The WAK extracellular domain is variable among the five isoforms, and collectively the family is expressed in most vegetative tissues. WAK1 and WAK2 are the most ubiquitously and abundantly expressed of the five tandemly arrayed genes, and their messages are present in vegetative meristems, junctions of organ types, and areas of cell expansion. They are also induced by pathogen infection and wounding. Recent experiments demonstrate that antisense WAK expression leads to a reduction in WAK protein levels and the loss of cell expansion. A large amount of WAK is covalently linked to pectin, and most WAK that is bound to pectin is also phosphorylated. In addition, one WAK isoform binds to a secreted glycine-rich protein (GRP). The data support a model where WAK is bound to GRP as a phosphorylated kinase, and also binds to pectin. How WAKs are involved in signaling from the pectin extracellular matrix in coordination with GRPs will be key to our understanding of the cell wall's role in cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.