Cardiomyopathy refers to diseases of the heart muscle that becomes enlarged, thick, or rigid. These changes affect the electrical stability of the myocardial cells, which in turn predisposes the heart to failure or arrhythmias. Cardiomyopathy in its two common forms, dilated and hypertrophic, implies enlargement of the atria; therefore, we investigate its diagnosis through P wave features. In particular, we design a neuro-fuzzy network trained with a new evolutionary algorithm called biogeography-based optimization (BBO). The neuro-fuzzy network recognizes and classifies P wave features for the diagnosis of cardiomyopathy. In addition, we incorporate opposition-based learning in the BBO algorithm for improved training. First we develop a neuro-fuzzy model structure to diagnose cardiomyopathy using P wave features. Next we train the network using BBO and a clinical database of ECG signals. Preliminary results indicate that cardiomyopathy can be reliably diagnosed with these techniques.
Among the 19 ECG parameters analyzed, PAC activity, frequency-domain HRV, and heart rate turbulence parameters were the best discriminators for postoperative AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.