The objective of this work was to determine the efficiency of utilization (EU) and produce factorial models for optimal isoleucine (Ile) intake. Six dose–response trials were carried out, three for males and three for females, with 640 Ross 308 in each studied phase. The initial (1–14 days), grower (15–28 days) and finisher (29–42 days) phases were evaluated to cover the growing phase of the broiler chicken. In total, eight treatments were randomly distributed to four replicates of 20 birds each. The treatments consisted of seven crescent levels of Ile and one counter proof to ensure that Ile was the first limiting amino acid in the diet. Dilution technique was applied to produce the levels of Ile and keep the amino acid ratio with lysine. The EU was determined to account for whole body or partitioned for feather‐free body (Bff) and feather. Two distinct factorial models were adjusted, M1 and M2. The M2 model was evaluated for one or two EU, being denominated as M2 and M3. When the efficiency was partitioned, the values of 53% and 69% for feather and Bff were determined. The optimal Ile intake estimated for each model were of 275, 908, 1,412 mg of Ile/bird/day (M1); 258, 829, 1,321 mg of Ile/bird/day (M2); and 284, 835, 1,288 mg of Ile/bird/day (M3) for initial, grower and finisher phases respectively. The EU partitioned for feather‐free body and feather reduced the biased of the model M3. Overall, higher values of Ile intake are estimated when model M1 is used, which may be the difference in account for body weight gain (M1) or only protein gain (M2 and M3) to estimate the amount of amino acid required for broiler.
Context Genetic improvements in modern strains have led to continuous increments in broiler growth rates, which, as a consequence, have resulted in higher economic returns for broiler producers over the last decades. Aim The present study was conducted to characterise the potential growth of the body and feathers of Cobb 500, Hubbard Flex and Ross 308 male and female broilers, as well as to assess the changes in chemical composition that occur up to 16 weeks of age. Methods Birds were fed isoenergetic diets divided in four phases and formulated to marginally exceed the nutritional requirements of the strains throughout the growing period. They were maintained in a controlled environment so as not to limit growth. A dual energy X-ray absorptiometry (DXA) scanner was used to follow the in vivo body composition of 12 broilers of each strain and sex (total of 72 broilers), and the feather weight and composition was determined in four birds of each strain and sex selected at intervals during the growing period (total of 288 broilers) through comparative slaughter with later chemical analysis. Key results Parameters of Gompertz growth curve to describe the strains were estimated for body and feather weight as well as for the growth of their chemical components. Conclusion Differences in the growth rates between strains were evident, indicating the possible differences in selection methods used by geneticists in the different breeding companies. These genetic parameters would explain part of the variation on broiler´s performance which impacts on the way they should be fed and housed during growth. Implications The accurate description of genetic growth potential is useful information to be associated with factorial models that predict nutritional and feed intake requirements of birds. The main advantage of DXA technology is to decrease the variation of body deposition on the Gompertz model, resulting from the use of the same bird throughout its life. Despite the speed of obtaining chemical values of the body, the method is unsuitable for measuring the growth of feathers, which is also important data to be collected and related to the broiler strains.
The trial was conducted to evaluate the supplementation of E. coli phytase on performance, weight and ash of bones, as well as to determine the bioavailability of P and cost/benefit of its use in diets. A total 1,890 Cobb male day old chicks were assigned to six treatments and seven replicates with 45 birds each, distributed in a completely randomized design. The treatments were: Positive Control; Negative Control (NC1)-reduction of 0.06% av P; Negative Control 2 (NC2)-reduction of 0.12% av P; NC2 + Phytase (120 OTU); NC2 + Phytase (180 OTU); NC2 + Phytase (240 OTU), being 1 OTU equivalent to approximately 2 FTU. With different phytase inclusions, it was possible to verify a gradual increase on body weight gain, feed intake, feed conversion ratio, viability and even the bone characteristics of broilers fed diets containing reduction of P. The closest levels to the highest studied (240 OTU) showed the best results. The replacement of dicalcium phosphate by phytase supplementation is economically viable when the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.