Autism spectrum disorders (ASD) represent a formidable challenge for
psychiatry and neuroscience because of their high prevalence, life-long nature,
complexity and substantial heterogeneity. Facing these obstacles requires
large-scale multidisciplinary efforts. While the field of genetics has pioneered
data sharing for these reasons, neuroimaging had not kept pace. In response, we
introduce the Autism Brain Imaging Data Exchange (ABIDE) – a grassroots
consortium aggregating and openly sharing 1112 existing resting-state functional
magnetic resonance imaging (R-fMRI) datasets with corresponding structural MRI
and phenotypic information from 539 individuals with ASD and 573 age-matched
typical controls (TC; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we
present this resource and demonstrate its suitability for advancing knowledge of
ASD neurobiology based on analyses of 360 males with ASD and 403 male
age-matched TC. We focused on whole-brain intrinsic functional connectivity and
also survey a range of voxel-wise measures of intrinsic functional brain
architecture. Whole-brain analyses reconciled seemingly disparate themes of both
hypo and hyperconnectivity in the ASD literature; both were detected, though
hypoconnectivity dominated, particularly for cortico-cortical and
interhemispheric functional connectivity. Exploratory analyses using an array of
regional metrics of intrinsic brain function converged on common loci of
dysfunction in ASD (mid and posterior insula, posterior cingulate cortex), and
highlighted less commonly explored regions such as thalamus. The survey of the
ABIDE R-fMRI datasets provides unprecedented demonstrations of both replication
and novel discovery. By pooling multiple international datasets, ABIDE is
expected to accelerate the pace of discovery setting the stage for the next
generation of ASD studies.
To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional 'mirror neuron system' may underlie the social deficits observed in autism.
The discovery of premotor and parietal cells known as mirror neurons in the macaque brain that fire not only when the animal is in action, but also when it observes others carrying out the same actions provides a plausible neurophysiological mechanism for a variety of important social behaviours, from imitation to empathy. Recent data also show that dysfunction of the mirror neuron system in humans might be a core deficit in autism, a socially isolating condition. Here, we review the neurophysiology of the mirror neuron system and its role in social cognition and discuss the clinical implications of mirror neuron dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.