The synthesis of polymer nanoparticles (NPs) with controlled characteristics has become an appealing research topic lately. Nanomedicine, and especially drug delivery and imaging, are fields that require particles of a controlled size and with a tailored arrangement of functional groups. Intramolecular cross-linking or collapse of single polymer chains has emerged as an efficient alternative for the synthesis of well-defined polymer NPs. This technique allows the generation of 1.5-20 nm particles with a wide variety of chemical compositions and functionalities. This review begins by gathering synthetic strategies described in the literature and groups them into four main synthetic methods: homo-functional collapse, hetero-functional collapse, crosslinker-mediated collapse, and one-block collapse of diblock or triblock copolymers. Afterwards, the main characterization techniques and physical properties of single-chain polymer NPs (SCPNs) are exposed. Finally, several applications in nanomedicine are mentioned followed by some future perspectives.
The development of tools for the early diagnosis of pancreatic adenocarcinoma is an urgent need in order to increase treatment success rate and reduce patient mortality. Here, we present a modular nanosystem platform integrating soft nanoparticles with a targeting peptide and an active imaging agent for diagnostics. Biocompatible single-chain polymer nanoparticles (SCPNs) based on poly(methacrylic acid) were prepared and functionalized with the somatostatin analogue PTR86 as the targeting moiety, since somatostatin receptors are overexpressed in pancreatic cancer. The gamma emitter Ga was incorporated by chelation and allowed in vivo investigation of the pharmacokinetic properties of the nanoparticles using single photon emission computerized tomography (SPECT). The resulting engineered nanosystem was tested in a xenograph mouse model of human pancreatic adenocarcinoma. Imaging results demonstrate that accumulation of targeted SCPNs in the tumor is higher than that observed for nontargeted nanoparticles due to improved retention in this tissue.
The need for test systems for nanoparticle biocompatibility, toxicity, and inflammatory or adaptive immunological responses is paramount. Nanoparticles should be free of microbiological and chemical contaminants, and devoid of toxicity. Nevertheless, in the absence of contamination, these particles may still induce undesired immunological effects in vivo, such as enhanced autoimmunity, hypersensitivity reactions, and fibrosis. Here we show that artificial particles of specific sizes affect immune cell recruitment as tested in a dermal air pouch model in mice. In addition, we demonstrate that the composition of nanoparticles may influence immune cell recruitment in vivo. Aside from biophysical characterizations in terms of hydrodynamic diameter, zeta potential, concentration, and atomic concentration of metals, we show that – after first-line in vitro assays – characterization of cellular and molecular effects by dermal air pouch analysis is straightforward and should be included in the quality control of nanoparticles. We demonstrate this for innate immunological effects such as neutrophil recruitment and the production of immune-modulating matrix metalloproteases such as MMP-9; we propose the use of air pouch leukocytosis analysis as a future standard assay.
The syntheses of novel tricyclic pyrrolo[2,3-d]pyrimidine analogues of S6-methylthioguanine are described. The crystal structures and pKa values of these and related O6-methylguanine analogues are reported. All compounds display higher pKa values than O6-methylguanine with the sulfur-containing analogues being the more basic and exhibiting higher stability in aqueous solution. In a standard substrate assay with the human repair protein O6-methylguanine-DNA methyltransferase (MGMT) only the oxygen-containing analogue displayed activity.
We show that DNA containing a conformationally-locked anti analogue of O(6)-alkylguanine is a poor substrate for human O(6)-methylguanine-DNA methyltransferase (MGMT) and the alkyltransferase-like protein, Atl1. This highlights the requirement for the syn conformation and rationalises why certain O(6)-alkylguanines are poor MGMT substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.