Human embryonic stem cells (hESCs) are envisioned to be a major source for cell-based therapies. Efforts to overcome rejection of hESCs include nuclear transfer and collection of hESC banks representing the broadest diversity of major histocompatability complex (MHC) polymorphorisms. Surprisingly, immune responses to hESCs have yet to be experimentally evaluated. Here, injection of hESCs into immune-competent mice was unable to induce an immune response. Undifferentiated and differentiated hESCs failed to stimulate proliferation of alloreactive primary human T cells and inhibited third-party allogeneic dendritic cell-mediated T-cell proliferation via cellular mechanisms independent of secreted factors. Upon secondary rechallenge, T cells cocultured with hESCs were still responsive to allogeneic stimulators but failed to proliferate upon re-exposure to hESCs. Our study demonstrates that hESCs possess unique immune-privileged characteristics and provides an unprecedented opportunity to further investigate the mechanisms of immune response to transplantation of hESCs that may avoid immune-mediated rejection. Stem
The inherent immunosuppressive properties and low immunogenicity of mesenchymal stems cells (MSCs) suggested their therapeutic potential in transplantation. We investigated whether MSCs could prolong allograft survival. Treatment involving infusion of MSCs into BALB/c recipients 24 hours after receiving a heart allograft from a C57BL/6 donor significantly abated rejection and doubled graft mean survival time compared to untreated recipients. Furthermore, combination therapy of MSCs and low-dose Rapamycin (Rapa) achieved long-term heart graft survival (>100 days) with normal histology. The treated recipients readily accepted donor skin grafts but rejected third-party skin grafts, indicating the establishment of tolerance. Tolerant recipients exhibited neither intragraft nor circulating antidonor antibodies, but demonstrated significantly high frequencies of both tolerogenic dendritic cells (Tol-DCs) and CD4 + CD25 + Foxp3 + T cells in the spleens. Infusion of GFP + C57BL/6-MSCs in combination with Rapa revealed that the GFP-MSCs accumulated in the lymphoid organs and grafts of tolerant recipients. Thus, engraftment of infused MSCs within the recipient's lymphoid organs and allograft appeared to be instrumental in the induction of allograft-specific tolerance when administered in combination with a subtherapeutic dose of Rapamycin. This study supports the clinical applicability of MSCs in transplantation.
CTLA-4 (CD152) engagement results in down-regulation of T cell activation. Two mechanisms have been postulated to explain CTLA-4 inhibition of T cell activation: negative signaling and competitive antagonism of CD28:B7-mediated costimulation. We assessed the contributions of these two mechanisms using a panel of T cell lines expressing human CTLA-4 with mutations in the cytoplasmic region. Under conditions of B7-independent costimulation, inhibition of IL-2 production following CTLA-4 engagement required the CTLA-4 cytoplasmic region. In contrast, under B7-dependent costimulation, inhibition of IL-2 production by CTLA-4 engagement was directly proportional to CTLA-4 cell surface levels and did not require its cytoplasmic region. Thus, CTLA-4 down-regulates T cell activation by two different mechanisms—delivery of a negative signal or B7 sequestration—that are operational depending on the levels of CTLA-4 surface expression. These two mechanisms may have distinct functional outcomes: rapid inhibition of T cell activation or induction of T cell anergy.
Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.