Breast cancer is a fatal disease causing high mortality in women. Constant efforts are being made for creating more efficient techniques for early and accurate diagnosis. Classical methods require oncologists to examine the breast lesions for detection and classification of various stages of cancer. Such manual attempts are time consuming and inefficient in many cases. Hence, there is a need for efficient methods that diagnoses the cancerous cells without human involvement with high accuracies. In this research, image processing techniques were used to develop imaging biomarkers through mammography analysis and based on artificial intelligence technology aiming to detect breast cancer in early stages to support diagnosis and prioritization of high-risk patients. For automatic classification of breast cancer on mammograms, a generalized regression artificial neural network was trained and tested to separate malignant and benign tumors reaching an accuracy of 95.83%. With the biomarker and trained neural net, a computer-aided diagnosis system is being designed. The results obtained show that generalized regression artificial neural network is a promising and robust system for breast cancer detection. The Laboratorio de Innovacion y Desarrollo Tecnologico en Inteligencia Artificial is seeking collaboration with research groups interested in validating the technology being developed.
One of the main problems in crops is the presence of pests. Traditionally, sticky yellow traps are used to detect pest insects, and they are then analyzed by a specialist to identify the pest insects present in the crop. To facilitate the identification, classification, and counting of these insects, it is possible to use digital image processing (DIP). This study aims to demonstrate that DIP is useful for extracting invariant characteristics of psyllids (Bactericera cockerelli), thrips (Thrips tabaci), whiteflies (Bemisia tabaci), potato flea beetles (Epitrix cucumeris), pepper weevils (Anthonomus eugenii), and aphids (Myzus persicae). The characteristics (e.g., area, eccentricity, and solidity) help classify insects. DIP includes a first stage that consists of improving the image by changing the levels of color intensity, applying morphological filters, and detecting objects of interest, and a second stage that consists of applying a transformation of invariant scales to extract characteristics of insects, independently of size or orientation. The results were compared with the data obtained from an entomologist, reaching up to 90% precision for the classification of these insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.