We present here an experimental, strictly one-dimensional rotational system, made by using single magnetic Janus particles in a static magnetic field. These particles were half-coated with a thin metallic film, and by turning on a properly oriented external static magnetic field, we monitor the rotational brownian motion of single particles, in solution, around the desired axis. Bright-field microscopy imaging provides information on the particle orientation as a function of time. Rotational diffusion coefficients are derived for one-dimensional rotational diffusion, both for a single rotating particle and for a cluster of four such particles. Over the studied time domain, up to 10 s, the variation of the angle of rotation is strictly brownian; its probability distribution function is gaussian, and the mean squared angular displacement is linear in time, as expected for free diffusion. Values for the rotational diffusion coefficients were also determined. Monte Carlo and hydrodynamic simulations agree well with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.