Traditionally, transition metal-catalyzed enantioselective transformations rely on chiral ligands tightly bound to the metal to induce asymmetric product distributions. Here we report high enantioselectivities conferred by a chiral counterion in a metal-catalyzed reaction. Two different transformations catalyzed by cationic gold(I) complexes generated products in 90 to 99% enantiomeric excess with the use of chiral binaphthol-derived phosphate anions. Furthermore, we show that the chiral counterion can be combined additively with chiral ligands to enable an asymmetric transformation that cannot be achieved by either method alone. This concept of relaying chiral information via an ion pair should be applicable to a vast number of metal-mediated processes.
The C 3 vanadium(V) amine triphenolate complex 1f has been characterized as a structural and functional model of vanadium haloperoxidases. The complex catalyzes efficiently sulfoxidations at room temperature using hydrogen peroxide as the terminal oxidant, yielding the corresponding sulfoxides in quantitative yields and high selectivities (catalyst loading down to 0.01%, TONs up to 9900, and TOFs up to 8000 h (-1)) as well as bromination of 1,3,5-trimethoxybenzene (catalyst loading down to 0.05%, TONs up to 1260, and TOFs up to 220 h (-1)).
Triphenolamines are highly modular tetradentate molecules that effectively coordinate to transition metals and main group elements with podand topology. They form chiral complexes with intrinsically well defined coordination geometries controlled by the ligand, in particular by the nature of the substituents in ortho position to the phenol, which are able to influence their reactivity and stability. The metal complexes, especially Ti(iv) and V(v), have been found to be effective catalyst in polymerization reactions and oxygen transfer processes.
Carbon nanostructures (CNSs), which are made up of extended sp2-hybridized carbon networks, are largely employed as nanofillers for polymer phases to obtain polymerbased nanocomposites (PNCs). Following their inclusion, the polymer matrices are often improved in many ways, such as enhanced electrical and thermal conductivity, increased stability, and mechanical robustness. The chemical functionalization of the external CNS surfaces with organic substituents is often a key tool for their effective and homogeneous incorporation within a polymer phase, avoiding the formation of aggregates, which can lower the performance of the the final material. This microreview furnishes an overview of PNCs that contain substituted CNSs with organic functionalities. These CNS-based PNCs can be used as organic functional materials in different applications that range from clean energy harvesting and storage to sensing and biomedicine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.