The ZX-calculus is a graphical calculus for reasoning about quantum systems and processes. It is known to be universal for pure state qubit quantum mechanics (QM), meaning any pure state, unitary operation and post-selected pure projective measurement can be expressed in the ZX-calculus. The calculus is also sound, i.e. any equality that can be derived graphically can also be derived using matrix mechanics. Here, we show that the ZX-calculus is complete for pure qubit stabilizer QM, meaning any equality that can be derived using matrices can also be derived pictorially. The proof relies on bringing diagrams into a normal form based on graph states and local Clifford operations.are both represented in one dimension, namely a line of text. Yet the quantum circuit notation has one big disadvantage: there are no widely-taught transformation rules for quantum circuit diagrams. Thus papers about quantum circuits often contain long appendices full of circuit identities, which have to be proved (or at least stated) anew each time.Unlike quantum circuit notation, the ZX-calculus developed in [5,6] is not just a graphical notation: it has built-in rewrite rules, which transform one diagram into a different diagram representing the same overall process. These rewrite rules make the ZX-calculus into a formal system with non-trivial equalities between diagrams. In the following, we will thus distinguish between diagrams which are identical-i.e. they consist of the same elements combined in the same way-and diagrams which are equal, meaning one can be rewritten into the other. Two identical diagrams are necessarily equal to each other, but two equal diagrams may not be identical.As a formal system modeling pure state qubit quantum mechanics (QM), there are several properties the ZX-calculus must have to be useful. One of these is universality: the question of whether any pure state, unitary operator, or post-selected measurement can be represented by a ZX-calculus diagram. The ZX-calculus is indeed universal [6]. A second important property is soundness: Can any equality which can be derived in the ZX-calculus also be derived using other formalisms, such as matrix mechanics? By considering the rewrite rules one-by-one, it is not too difficult to show that the ZX-calculus is sound [6]. As a result of this, the ZX-calculus can be used to analyze a variety of questions, e.g. quantum non-locality [7] and the verification of measurement-based quantum computations [6,10,12].The converse of the soundness property is completeness: the ZX-calculus is complete if any equality that can be derived using matrices can also be derived graphically. It has been conjectured that the ZX-calculus is not complete for general pure state qubit QM, but in this paper we show that it is complete for qubit stabilizer QM. Stabilizer QM is an extensively studied part of quantum theory, which can be operationally described as the fragment of pure state QM where the only allowed operations are preparations or measurements in the computational basis and unit...
We present a new graphical calculus that is sound and complete for a universal family of quantum circuits, which can be seen as the natural string-diagrammatic extension of the approximately (realvalued) universal family of Hadamard+CCZ circuits. The diagrammatic language is generated by two kinds of nodes: the so-called 'spider' associated with the computational basis, as well as a new arity-N generalisation of the Hadamard gate, which satisfies a variation of the spider fusion law. Unlike previous graphical calculi, this admits compact encodings of non-linear classical functions. For example, the AND gate can be depicted as a diagram of just 2 generators, compared to ∼ 25 in the ZX-calculus. Consequently, N-controlled gates, hypergraph states, Hadamard+Toffoli circuits, and diagonal circuits at arbitrary levels of the Clifford hierarchy also enjoy encodings with low constant overhead. This suggests that this calculus will be significantly more convenient for reasoning about the interplay between classical non-linear behaviour (e.g. in an oracle) and purely quantum operations. After presenting the calculus, we will prove it is sound and complete for universal quantum computation by demonstrating the reduction of any diagram to an easily describable normal form.
The ZX-calculus is a graphical language for quantum processes with built-in rewrite rules. The rewrite rules allow equalities to be derived entirely graphically, leading to the question of completeness: can any equality that is derivable using matrices also be derived graphically?The ZX-calculus is known to be complete for scalar-free pure qubit stabilizer quantum mechanics, meaning any equality between two pure stabilizer operators that is true up to a non-zero scalar factor can be derived using the graphical rewrite rules. Here, we replace those scalar-free rewrite rules with correctly scaled ones and show that, by adding one new diagram element and a new rewrite rule, the calculus can be made complete for pure qubit stabilizer quantum mechanics with scalars. This completeness property allows amplitudes and probabilities to be calculated entirely graphically. We also explicitly consider stabilizer zero diagrams, i.e. diagrams that represent a zero matrix, and show that two new rewrite rules suffice to make the calculus complete for those.
Translations between the quantum circuit model and the measurement-based one-way model are useful for verification and optimisation of quantum computations. They make crucial use of a property known as gflow. While gflow is defined for one-way computations allowing measurements in three different planes of the Bloch sphere, most research so far has focused on computations containing only measurements in the XY-plane. Here, we give the first circuit-extraction algorithm to work for one-way computations containing measurements in all three planes and having gflow. The algorithm is efficient and the resulting circuits do not contain ancillae. One-way computations are represented using the ZX-calculus, hence the algorithm also represents the most general known procedure for extracting circuits from ZX-diagrams. In developing this algorithm, we generalise several concepts and results previously known for computations containing only XY-plane measurements. We bring together several known rewrite rules for measurement patterns and formalise them in a unified notation using the ZX-calculus. These rules are used to simplify measurement patterns by reducing the number of qubits while preserving both the semantics and the existence of gflow. The results can be applied to circuit optimisation by translating circuits to patterns and back again.
The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: a stabilizer ZX-diagram can be transformed into another one if and only if these two diagrams represent the same quantum evolution or quantum state. We show that the stabilizer ZX-calculus can be simplified, removing unnecessary equations while keeping only the essential axioms which potentially capture fundamental structures of quantum mechanics. We thus give a significantly smaller set of axioms and prove that meta-rules like 'colour symmetry' and 'upside-down symmetry', which were considered as axioms in previous versions of the language, can in fact be derived. In particular, we show that the additional symbol and one of the rules which had been recently introduced to keep track of scalars (diagrams with no inputs or outputs) are not necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.