Background & AimsEmerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host–microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals.MethodsBecause commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms.ResultsA significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin.ConclusionsOur findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID.
Background Mother's own milk (MOM) is protective against gut microbiota alterations associated with necrotizing enterocolitis (NEC) and feeding intolerance among preterm infants. It is unclear whether this benefit is preserved with donor milk (DM) feeding. Objective We aimed to compare microbiota development, growth, and feeding tolerance in very-low-birth-weight (VLBW) infants fed an exclusively human milk diet of primarily MOM or DM. Methods One hundred and twenty-five VLBW infants born at Texas Children's Hospital were enrolled and grouped into cohorts based on percentage of MOM and DM in enteral feeds. Feeds were fortified with DM-derived fortifier per unit protocol. Weekly stool samples were collected for 6 wk for microbiota analysis [16S ribosomal RNA (rRNA) sequencing]. A research nurse obtained weekly anthropometrics. Clinical outcomes were compared via Wilcoxon's rank-sum test and Fisher's exact test, as well as multivariate analysis. Results The DM cohort (n = 43) received on average 14% mothers’ milk compared with 91% for the MOM cohort (n = 74). Diversity of gut microbiota across all time points (n = 546) combined was increased in MOM infants (P < 0.001). By 4 and 6 wk of life, microbiota in MOM infants contained increased abundance of Bifidobacterium (P = 0.02) and Bacteroides (P = 0.04), whereas DM-fed infants had increased abundance of Staphylococcus (P = 0.02). MOM-fed infants experienced a 60% reduction in feeding intolerance (P = 0.03 by multivariate analysis) compared with DM-fed infants. MOM-fed infants had greater weight gain than DM-fed infants. Conclusions Compared with DM-fed infants, MOM-fed infants have increased gut microbial community diversity at the phylum and genus levels by 4 and 6 wk of life, as well as better feeding tolerance. MOM-fed infants had superior growth. The incidence of NEC and other gastrointestinal morbidity is low among VLBW infants fed an exclusively human milk diet including DM-derived fortifier. This trial was registered at clinicaltrials.gov as NCT02573779.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.