Reactive oxygen species (ROS) can induce lysosomal membrane permeabilization (LMP). Photoirradiation of murine hepatoma 1c1c7 cultures preloaded with the photosensitizer NPe6 generates singlet oxygen within acidic organelles, and causes LMP and the activation of procaspases. Treatment with the cationic amphiphilic drugs (CADs) U18666A, imipramine, and clozapine stimulated the accumulation of filipin-stainable non-esterified cholesterol/sterols in late endosomes/lysosomes, but not in mitochondria. Concentration-response studies demonstrated an inverse relationship between lysosomal non-esterified cholesterol/sterol contents and susceptibility to NPe6 photoirradiation-induced intracellular membrane oxidation, LMP, and activation of procaspases-9 and -3. Similarly, the kinetics of restoration of NPe6 photoirradiation-induced LMP paralleled the losses of lysosomal cholesterol that occurred upon replating U18666A-treated cultures in CAD-free medium. Consistent with the oxidation of lysosomal cholesterol, filipin staining in U18666A-treated cultures progressively decreased with increasing photoirradiating light dose. U18666A also suppressed the inductions of LMP and procaspase activation by exogenously added hydrogen peroxide. However, neither U18666A nor imipramine suppressed the induction of apoptosis by agents that did not directly induce LMP. These studies indicate that lysosomal non-esterified cholesterol/sterol content modulates susceptibility to ROS-induced LMP, and possibly does so by being an alternative target for oxidants and lowering the probability of damage to other lysosomal membrane lipids and/or proteins.
Neurofibromatosis type 1 (NF1) is a genetic disorder that is driven by the loss of neurofibromin (Nf) protein function. Nf contains a Ras-GTPase-activating protein domain, which directly regulates Ras signaling. Numerous clinical manifestations are associated with the loss of Nf and increased Ras activity. Ras proteins must be prenylated to traffic and functionally localize with target membranes. Hence, Ras is a potential therapeutic target for treating NF1. We have tested the efficacy of two novel farnesyl transferase inhibitors (FTIs), 1 and 2, alone or in combination with lovastatin, on two NF1 malignant peripheral nerve sheath tumor (MPNST) cell lines, NF90-8 and ST88-14. Single treatments of 1, 2, or lovastatin had no effect on Ras prenylation or MPNST cell proliferation. However, low micromolar combinations of 1 or 2 with lovastatin (FTI/ lovastatin) reduced Ras prenylation in both MPNST cell lines. Furthermore, this FTI/lovastatin combination treatment reduced cell proliferation and induced an apoptotic response as shown by morphological analysis, procaspase-3/-7 activation, loss of mitochondrial membrane potential, and accumulation of cells with sub-G 1 DNA content. Little to no detectable toxicity was observed in normal rat Schwann cells following FTI/lovastatin combination treatment. These data support the hypothesis that combination FTI plus lovastatin therapy may be a potential treatment for NF1 MPNSTs.
Exposure of the human malignant peripheral nerve sheath tumor cell lines STS-26T, ST88-14, and NF90-8 to nanomolar concentrations of both lovastatin and farnesyl transferase inhibitor (FTI)-1 but not to either drug alone induced cell death. ST88-14 and NF90-8 cells underwent apoptosis, yet dying STS-26T cells did not. FTI-1 cotreatment induced a strong and sustained autophagic response as indicated by analyses of microtubule-associated protein-1 light chain 3 (LC3)-II accumulation in STS-26T cultures. Extensive colocalization of LC3-positive punctate spots was observed with both lysosomeassociated membrane protein (LAMP)-1 and LAMP-2 (markers of late endosomes/lysosomes) in solvent or FTI-1 or lovastatintreated STS-26T cultures but very little colocalization in lovastatin/FTI-1-cotreated cultures. The absence of colocalization in the cotreatment protocol correlated with loss of LAMP-2 expression. Autophagic flux studies indicated that lovastatin/ FTI-1 cotreatment inhibited the completion of the autophagic program. In contrast, rapamycin induced an autophagic response that was associated with cytostasis but maintenance of viability. These studies indicate that cotreatment of STS-26T cells with lovastatin and FTI-1 induces an abortive autophagic program and nonapoptotic cell death.
The therapeutic usefulness of the quinoxaline derivatives XK469 (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid) and SH80 (2-{4-[(7-bromo-2-quinolinyl)oxy]phenoxy}propionic acid) has been attributed to their abilities to induce G 2 /M arrest and apoptotic or autophagic cell death. Concentrations of XK469 or SH80 Ն 5 M were cytostatic to cultures of the normal murine melanocyte cell line Melan-a. Higher concentrations caused dosedependent cytotoxicity. Concentrations Ն10 M provoked dramatic morphological changes typified by marked increases in cell size and granularity. XK469/SH80-treated cultures accumulated tetraploid (4N) DNA-containing cells within 24 h of treatment, an 8N population within 3 days, and a 16N population within 5 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.