Millions of children are impacted by neurodevelopmental disorders (NDDs), which unfold early in life, have varying genetic etiologies and can involve a variety of specific or generalized impairments in social, cognitive and motor functioning requiring potentially lifelong specialized supports. While specific disorders vary in their domain of primary deficit (e.g. autism spectrum disorder (social), attention-deficit/hyperactivity disorder (attention), developmental coordination disorder (motor) and developmental language disorder (language)), comorbidities between NDDs are common. Intriguingly, many NDDs are associated with difficulties in skills related to rhythm, timing and synchrony though specific profiles of rhythm/timing impairments vary across disorders. Impairments in rhythm/timing may instantiate vulnerabilities for a variety of NDDs and may contribute to both the primary symptoms of each disorder as well as the high levels of comorbidities across disorders. Drawing upon genetic, neural, behavioural and interpersonal constructs across disorders, we consider how disrupted rhythm and timing skills early in life may contribute to atypical developmental cascades that involve overlapping symptoms within the context of a disorder's primary deficits. Consideration of the developmental context, as well as common and unique aspects of the phenotypes of different NDDs, will inform experimental designs to test this hypothesis including via potential mechanistic intervention approaches. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.
Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia.
Prosodic cues in speech are indispensable for comprehending a speaker’s message, recognizing emphasis and emotion, parsing segmental units, and disambiguating syntactic structures. While it is commonly accepted that prosody provides a fundamental service to higher-level features of speech, the neural underpinnings of prosody processing are not clearly defined in the cognitive neuroscience literature. Many recent electrophysiological studies have examined speech comprehension by measuring neural entrainment to the speech amplitude envelope, using a variety of methods including phase-locking algorithms and stimulus reconstruction. Here we review recent evidence for neural tracking of the speech envelope and demonstrate the importance of prosodic contributions to the neural tracking of speech. Prosodic cues may offer a foundation for supporting neural synchronization to the speech envelope, which scaffolds linguistic processing. We argue that prosody has an inherent role in speech perception, and future research should fill the gap in our knowledge of how prosody contributes to speech envelope entrainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.