Background Emerging studies indicate that some COVID-19 patients suffer from persistent symptoms including breathlessness and chronic fatigue; however the long-term immune response in these patients presently remains ill-defined. Methods Here we describe the phenotypic and functional characteristics of B and T cells in hospitalised COVID-19 patients during acute disease and at 3-6 months of convalescence. Findings We report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic programme evident in CD8 + T cells as well as elevated production of type-1 cytokines and IL-17. Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to toll-like receptor activation, skewed towards a pro-inflammatory phenotype. Whereas the frequency of IL-6 + B cells was restored in convalescent patients irrespective of clinical outcome, recovery of IL-10 + B cells was associated with resolution of lung pathology. Conclusions Our data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with one subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalisation with COVID-19 could impact longer term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients. Funding Provided by UKRI, Lister Institute of Preventative Medicine, The Wellcome Trust, The Kennedy Trust for Rheumatology Research and 3M Global Giving.
For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami–Erofeev model. We determined an effective rate constant of k = 0.056 min–1 with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min–1.
BackgroundCOVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID).MethodsWe assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalization and up to 9 months of convalescence following COVID-19, respiratory syncytial virus (RSV) or influenza A (flu). Progressive fibrosing interstitial lung disease (PFILD) patients were included a positive control for severe, ongoing lung injury.ResultsMonocyte alterations in acute COVID-19 patients included aberrant expression of leucocyte migration molecules, continuing into convalescence (n=142) and corresponding to specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of chemokine receptor CXCR6 (p<0.0001) and adhesion molecule PSGL-1 (p<0.01), alongside preferential migration of monocytes towards CXCR6 ligand CXCL16 (p<0.05) which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in PFILD patients (p<0.001) confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited sustained reduction of the prostaglandin-generating enzyme COX-2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in RSV or flu convalescence.ConclusionsOur data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection resulting in the clinical syndrome COVID-19 is associated with an exaggerated immune response and monocyte infiltrates in the lungs and other peripheral tissues. It is now increasingly recognised that chronic morbidity persists in some patients. We recently demonstrated profound alterations of monocytes in hospitalised COVID-19 patients. It is currently unclear whether these abnormalities resolve or progress following patient discharge. We show here that blood monocytes in convalescent patients at their 12 week follow up, have a greater propensity to produce pro-inflammatory cytokines TNFα and IL-6, which was consistently higher in patients with resolution of lung injury as indicated by a normal chest X-ray and no shortness of breath (a key symptom of lung injury). Furthermore, monocytes from convalescent patients also displayed enhanced levels of molecules involved in leucocyte migration, including chemokine receptor CXCR6, adhesion molecule CD31/PECAM and integrins VLA-4 and LFA-1. Expression of migration molecules on monocytes was also consistently higher in convalescent patients with a normal chest X-ray. These data suggest persistent changes in innate immune function following recovery from COVID-19 and indicate that immune modulating therapies targeting monocytes and leucocyte migration may be useful in recovering COVID-19 patients with persistent symptoms.
NUCOLL43 is a novel ovarian clear cell carcinoma (O‐CCC) cell line that arose from a primary culture of a patient's malignant ascites. The cells grow reliably in cell culture with a doubling time of approx. 45 hours and form colonies at high efficiency. They have a very high degree of loss of heterozygosity (LOH) affecting approximately 85% of the genome, mostly copy neutral and almost identical to the original tumor. The cells express epithelial (pan‐cytokeratin) and mesenchymal (vimentin) characteristics, CA125 and p16, like the original tumor. They also express ARID1A but not HNF‐1β and, like the original tumor, and are negative for p53 expression, with no evidence of p53 function. NUCOLL43 cells express all other DNA damage response proteins investigated and have functional homologous recombination DNA repair. They are insensitive to cisplatin, the PARP inhibitor rucaparib, and MDM2 inhibitors but are sensitive to camptothecin, paclitaxel, and NVP‐BEZ235. The NUCOLL43 cell line represents a distinct subtype of O‐CCC that is p53 and HNF‐1β null but expresses ARID1A. Its high degree of similarity with the original tumor genomically and proteomically, as well as the high level of LOH, make this an interesting cell line for O‐CCC research. It has been deposited with Ximbio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.